397 resultados para ray trajectory equation
Resumo:
A new ruthenium(II) complex of the type [Ru(O2CMe)(MeCN)2(PPh3)2](CiO4) (1) has been isolated from a reaction between Ru2Cl(O2CMe), and PPh3 in MeCN followed by the addition of NaClO4. The structure of 1 is determined by single crystal X-ray studies. The crystal belongs to the monoclinic space group C2/m with the following unit cell dimensions for the C42H39N2O6P2ClRu(M = 866.15): a = 23.295(1)angstrom, b = 23.080(1)angstrom, c = 9.159(1)angstrom, beta = 107.32(1)-degrees, V = 4701(1)angstrom3, Z = 4, D(c) = 1.224 gcm-3, lambda(Mo - K-alpha) = 0.7107 angstrom, mu(Mo - K-alpha) = 4.09 cm-1, T = 293K, R = 0.081 (R(w) = 0.094) for 2860 reflections with I greater-than-or-equal-to 3-sigma(I) and g = 0.015853. In the complex cation, the symmetry about the metal centre is essentially octahedral showing the presence of a chelating acetato, two cis-oriented MeCN and two trans-disposed PPh3 ligands. The mechanistic aspects of the core cleavage reaction are discussed.
Resumo:
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 A, alpha = 74.30, beta = 76.65, gamma = 86.88 degrees. X-ray diffraction data were collected to a resolution of 2.44 A under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
Resumo:
Here we report on an x-ray specular reflectivity study of Ce-Si-Ge trilayers grown on Si(001) single-crystal substrate by ion beam sputtering deposition at various substrate temperatures. The electron-density profile of the trilayer as a function of depth, obtained from x-ray-reflectivity data, reveals an intermixing of Si and Ge. The x-ray-reflectivity data have been analyzed using a scheme based on the distorted-wave Born approximation, and the validity of the analysis scheme was checked using simulated data. Analyzed results provided information regarding interdiffusion in this system. We notice that although the Si-on-Ge interface is sharp, a Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface.
Resumo:
An analytical surface-ray tracing has been carried out for the prolate ellipsoid of revolution using a novel geodesic constant method. This method yields closed form expressions for all the ray-geometric parameters required for the UTD mutual coupling calculations for the antennas located arbitrarily in three dimensions, on the ellipsoid of revolution.
Resumo:
In order to gain access to the heptacyclic tetraone 3, efforts were directed towards the utilisation of the major 'unwanted' [4 + 2]-adduct 11 of tetrachlorodimethoxycyclopentadiene and norbornenobenzoquinone. Epoxides derived from the diol and dimethoxy derivatives of the adduct 11 undergo facile Wagner-Meerwein rearrangement resulting in the required endo, syn, endo stereochemistry as well as methano-bridge functionalisation to deliver 18 and 24, respectively. However, intramolecular ether formation, occurring via the capture of carbocation intermediate with the transannularly poised oxygen functionality, is a more facile process. Attempts to cleave the ether linkage resulted in the formation of a novel transannularly cyclised twisted bowl shape heptacyclic compound 30 and its structure has been established through X-ray crystallography.
Resumo:
The mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis has been cloned, expressed, purified and crystallized and the crystals have been characterized using X-ray diffraction. The Matthews coefficient suggests the possibility of two lectin domains in the triclinic cell. The amino-acid sequence of the domain indicates structural similarity to well characterized beta-prism II fold lectins.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
A galactose-specific seed lectin was purified from the legume Spatholobus parviflorus and crystallized using the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 60.998, b = 60.792, c = 78.179 angstrom, alpha = 101.32, beta = 91.38, gamma = 104.32 degrees. X-ray diffraction data were collected under cryoconditions (100 K) to a resolution of 2.04 angstrom using a MAR image-plate detector system mounted on a rotating-anode X-ray (Cu K alpha) generator. Molecular replacement using legume-lectin coordinates as a search model gave a tetrameric structure.
Resumo:
A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.
Resumo:
Core-level binding energies of the component metals in bimetallic clusters of various compositions in the Ni-Cu, Au-Ag, Ni-Pd, and Cu-Pd systems have been measured as functions of coverage or cluster size, after having characterized the clusters with respect to sizes and compositions. The core-level binding energy shifts, relative to the bulk metals, at large coverages or cluster size, Delta E(a), are found to be identical to those of bulk alloys. By substracting the Delta E(a) values from the observed binding energy shifts, Delta E, we obtain the shifts, Delta E(c), due to cluster size. The Delta E(c) values in all the alloy systems increase with the decrease in cluster size. These results establish the additivity of the binding energy shifts due to alloying and cluster size effects in bimetallic clusters.
Resumo:
The results of an X-ray reflectivity study of thick AlAs-AlGaAs and thin GeSi-Ge multilayers grown using metal-organic vapour-phase epitaxy and ion-beam sputtering deposition techniques, respectively, are presented. Asymmetry in interfaces is observed in both of these semiconductor multilayers. It is also observed that although the Si-on-Ge interface is sharp, an Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface. In the case of the III-V semiconductor, the AlAs-on-AlGaAs interface shows much greater roughness than that observed in the AlGaAs-on-AlAs interface. For thin multilayers it is demonstrated that the compositional profile as a function of depth can be obtained directly from the X-ray reflectivity data.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.