297 resultados para membrane electrode assembly


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ether imine) dendritic macromolecules were undertaken to study the reversible dendrimer monomer-megamer assembly-disassembly in aqueous solutions. Synthesis of thiol functionalized poly(ether imine) (PETIM) dendrimers and their covalent aggregation behavior in the aqueous solution of ethanol/water (2:1) is demonstrated. The dendritic megamers were characterized using microscopic techniques. Kinetics of the aggregation behavior was followed using turbidity measurements, light-scattering and atomic force microscopic techniques. Inherent luminescence behavior of PETIM dendrimer monomers was retained in the dendrimer megamers also, which allowed visualization of the megamers through confocal microscopy. Extent of thiol functionalities that remained after the megamer assembly was estimated through Ellman's assay. Subsequent to megamer assembly, disassembly of megamers to dendrimer monomers was conducted, using dithiothreitol reagent. Water-insoluble sudan I dye was encapsulated in dendrimer megamer and subsequent release profile was assessed during the disassembly in aqueous solutions. The studies were conducted using first, second and third generations, representing 4, 8 and 16 sulfhydryl groups at their peripheries of dendrimers, respectively. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to understand the vertical electric field stimulation of the bacterial cells, when grown on amorphous carbon substrates in vitro. In particular, the antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are studied using MTTassay, live/dead assay and inner membrane permeabilization assays. In our experiments, the carbon substrate acts as one electrode and the counter electrode is positioned outside the culture medium, thus suppressing the current, electrokinetic motions and chemical reactions. Guided by similar experiments conducted in our group on neuroblastoma cells, the present experimental results further establish the interdependence of field strength and exposure duration towards bacterial growth inactivation in vitro. Importantly, significant reduction in bacterial viability was recorded at the 2.5 V/cm electric field stimulation conditions, which does not reduce the neural cell viability to any significant extent on an identical substrate. Following electrical stimulation, the bacterial growth is significantly inhibited for S. aureus bacterial strain in an exposure time dependent manner. In summary, our experiments establish the effectiveness of the vertical electric field towards bacterial growth inactivation on amorphous carbon substrates, which is a cell type dependent phenomenon (Gram-positive vs. Gram-negative). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A layer-by-layer approach was used for the fabrication of multilayer films for ultra high gas barrier applications. The ultra high gas barrier material was designed by incorporating Nafion layer in between bilayers of poly(ethylene imine) and poly(acrylic acid) on a Surlyn substrate. When the barrier film with self-assembled Nafion is exposed to the moist environment, Nafion absorbs and desorbs water molecules simultaneously, thereby reducing the ingress of moisture in to the film. In order to study the effect of Nafion, the fabricated barrier materials with and without the presence of Nafion were tested for water vapor barrier properties. The barrier films were further used for encapsulating organic photovoltaic devices and were evaluated for their potential use in barrier applications. The devices encapsulated with the films containing Nafion exhibited better performance when subjected to accelerated aging conditions. Therefore, this study demonstrates the effectiveness of self-assembled Nafion in reducing the water vapor permeability by nearly five orders of magnitude and in increasing the lifetimes of organic devices by similar to 22 times under accelerated weathering conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of its hybrids with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by nascent hydrogen generated by the reaction between Si and KOH at similar to 60 degrees C. The overall process takes 5 to 7 minutes and 10 to 15 mu m of Si is consumed each time. We show that Si can be used multiple times and the rGO based hybrids can be used for electrode materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deformable mirror (DM) is an important component of an adaptive optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical realignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 deg) of incidence in the optical path. To this effect, we estimate to a first order the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel micro-machined membrane deformable mirror for various angles of incidence. It is observed that astigmatism is a dominant aberration, which was determined by measuring the difference between the tangential and sagittal focal planes. We justify our results on the basis of theoretical simulations and discuss the feasibility of using such a system for adaptive optics considering a trade-off between wavefront correction and astigmatism due to deformation. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blocked diisocyanate crosslinked chitosan membrane was modified by incorporating different mass% of NaY zeolite. The physico-chemical properties of resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The mechanical properties of the membranes were studied using universal testing machine (UTM). After measuring the equilibrium swelling, membranes were subjected to pervaporation for separation of water-isopropanol mixtures. Both flux and selectivity were increased with increasing NaY zeolite content in the membranes. The membrane containing 40 mass% of NaY zeolite exhibited the highest separation selectivity of 11,241 with a flux of 11.37 x 10(-2) kg/m(2) h for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, suggesting that these membranes could be effectively used to break the azeotropic point of water-isopropanol mixture. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. All the composite membranes exhibited lower activation energy compared to crosslinked membrane, indicating that the permeants require less energy during the process because of molecular sieving action attributed to the presence of sodalite and super cages in the framework of Nay zeolite. The Henry's mode of sorption dominates the process, giving an endothermic contribution. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unprecedented morphology of a titanium dioxide (TiO2) and cadmium sulfide (CdS) self-assembly obtained using a `truly' one-pot and highly cost effective method with a multi-gram scale yield is reported here. The TiO2-CdS assembly, comprising of TiO2 and CdS nanoparticles residing next to each other homogeneously self-assembling into `woollen knitting ball' like microspheres, exhibited remarkable potential as a visible light photocatalyst with high recyclability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulus artifacts inhibit reliable acquisition of biological evoked potentials for several milliseconds if an electrode contact is utilized for both electrical stimulation and recording purposes. This hinders the measurement of evoked short-latency biological responses, which is otherwise elicited by stimulation in implantable prosthetic devices. We present an improved stimulus artifact suppression scheme using two electrode simultaneous stimulation and differential readout using high-gain amplifiers. Substantial reduction of artifact duration has been shown possible through the common-mode rejection property of an instrumentation amplifier for electrode interfaces. The performance of this method depends on good matching of electrode-electrolyte interface properties of the chosen electrode pair. A novel calibration algorithm has been developed that helps in artificial matching of impedance and thereby achieves the required performance in artifact suppression. Stimulus artifact duration has been reduced down to 50 mu s from the stimulation-cum-recording electrodes, which is similar to 6x improvement over the present state of the art. The system is characterized with emulated resistor-capacitor loads and a variety of in-vitro metal electrodes dipped in saline environment. The proposed method is going to be useful for closed-loop electrical stimulation and recording studies, such as bidirectional neural prosthesis of retina, cochlea, brain, and spinal cord.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple yet remarkable, electrochemically activated carbon paste electrode (EACPE) was prepared by successive potential cycling of carbon paste in a 0.1 M NaOH solution and was effectively used for the simultaneous determination of catecholamines such as dopamine (DA), epinephrine (E) and Norepinephrine (NE) in presence of uric acid (UA) and ascorbic acid (AA). Taking DA as the ideal catecholamine, the electrochemical behaviors of DA, UA and AA such as scan rate and pH variation was studied by cyclic voltammetry (CV) in phosphate buffer solution (PBS, pH 7.1). This electrochemical sensor exhibited strong electrocatalytic activity towards the oxidation of a mixture of catecholamines, UA and AA with apparent reduction of overpotentials. Crider optimum conditions, limit of detection (S/N = 3) of DA, E, NE, UA and AA was found to be 0.08, 0.08, 0.07, 0.1 and 6.0 mu M, respectively by differential pulse voltammetry (DPV). The analytical performance of this modified electrode as a biosensor was also demonstrated for the determination of DA, UA and AA in dopamine injection, human urine and vitamin C tablets, respectively, in presence of other interfering substances. (C) 2015 The Electrochemical Society. All-rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.