301 resultados para mechanical device
Resumo:
Inverter dead-time, which is meant to prevent shoot-through fault, causes harmonic distortion and change in the fundamental voltage in the inverter output. Typical dead-time compensation schemes ensure that the amplitude of the fundamental output current is as desired, and also improve the current waveform quality significantly. However, even with compensation, the motor line current waveform is observed to be distorted close to the current zero-crossings. The IGBT switching transition times being significantly longer at low currents than at high currents is an important reason for this zero-crossover distortion. Hence, this paper proposes an improved dead-time compensation scheme, which makes use of the measured IGBT switching transition times at low currents. Measured line current waveforms in a 2.2 kW induction motor drive with the proposed compensation scheme are compared against those with the conventional dead-time compensation scheme and without dead-time compensation. The experimental results on the motor drive clearly demonstrate the improvement in the line current waveform quality with the proposed method.
Resumo:
Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.
Resumo:
A unique strategy was adopted here to improve the compatibility between the components of an immiscible polymer blend and strengthen the interface. PMMA, a mutually miscible polymer to both PVDF and ABS, improved the compatibility between the phases by localizing at the blends interface. This was supported by the core-shell formation with PMMA as the shell and ABS as the core as observed from the SEM micrographs. This phenomenon was strongly contingent on the concentration of PMMA in the blends. This strategy was further extended to localize graphene oxide (GO) sheets at the blends interface by chemically coupling it to PMMA (PMMA-g-GO). A dramatic increment of ca. 84% in the Young's modulus and ca. 124% in the yield strength was observed in the presence of PMMA-g-GO with respect to the neat blends. A simultaneous increment in both the strength and the modulus was observed in the presence of PMMA-g-GO whereas, only addition of GO resulted in a moderate improvement in the yield strength. This study reveals that a mutually miscible polymer can render compatibility between the immiscible pair and can improve the stress transfer at the interface.
Resumo:
The present investigation is an attempt at correlating the crystallographic orientation and mechanical properties of hexagonal commercially pure titanium (cp-titanium). Annealed cp-titanium sheets are subjected to tensile deformation along the rolling direction, along 45 degrees to the rolling direction and along 90 degrees to the rolling direction respectively. Crystallographic textures and mechanical properties of these cp-titanium samples are investigated in the present study. The hardness of different grains/orientations is estimated through nanoindentation, grain average misorientation, orientation estimated elastic stiffness and Taylor factor measurements. It is observed that the hardness of the grains close to basal orientation is higher compared to non-basal orientations. It is further observed that the estimated bulk mechanical properties of cp-titanium have a direct relationship with the volume fraction of basal grains/orientations. (C) 2014 Elsevier Inc All rights reserved.
Resumo:
Metal-organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF-1BN, ZIF-2BN, ZIF-3BN and similar to ZIF-4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that is much desired in MOFs. Observation of microporous features along with improved mechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.
Resumo:
Cast Mg/SiCp and AZ91/SiCp composites were successfully hot extruded vis-a-vis cast and unreinforced Mg and AZ91 alloy up to low (R=15:1) and high (R=54:1) extrusion ratios at 350 degrees C. Significant matrix grain refinement was noticed after extrusion due to dynamic recrystallization; the degree of refinement being relatively higher for the two composites. The AZ91 based materials (AZ91 and AZ91/SiCp) exhibited comparatively finer grain size both in cast condition and after extrusion due to strong pinning effect from alloying elements as well as Mg17Al12 intermetallic phase. Compositional analyses eliminated the possibility of any interfacial reaction between matrix (Mg/AZ91) and second phase reinforcement (SiCp) in case of the composites. Texture evolution shows the formation of < 10 (1) over bar0 >parallel to ED texture fibre for all the materials after extrusion irrespective of SiCp addition or alloying which is primarily due to the deformation of the matrix phase. Micro-hardness did not significantly increased on extrusion in comparison to the respective cast materials for both composites and unreinforced alloys. Dynamic mechanical analysis, however, confirmed that the damping properties were affected by the extrusion ratio and to a lesser extent, due to the presence of second phase at room temperature as well as at higher temperature (300 degrees C). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A new D-A structured conjugated polymer (PBDO-T-TDP) based on electron-rich benzo 1,2-b:4,5-b'] difuran (BDO) containing conjugated alkylthiophene side chains with an electron-deficient diketopyrrolopyrrole (DPP) derivative is designed and synthesized. The polymer shows a narrow band gap with broad UV-Visible absorption spectra, which is in contrast to that of the P3HT:PCBM binary blend. Furthermore, its energy levels can meet the energetic requirement of the cascaded energy levels of P3HT and PCBM. Therefore, PBDO-T-TDP is used as a sensitizer in P3HT: PCBM based BHJ solar cells and its effect on their photovoltaic properties was investigated by blending them together at various weight ratios. It is observed that the resulting ternary blend system exhibited a significant improvement in the device performance (similar to 3.10%) as compared with their binary ones (similar to 2.15%). Such an enhancement in the ternary blend system is ascribed to their balanced hole and electron mobility along with uniform distribution of PBDO-T-TDP in the blend system, as revealed by organic field effect transistors and AFM studies.
Resumo:
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could repolymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.
Resumo:
In the immediate surroundings of our daily life, we can find a lot of places where the energy in the form of vibration is being wasted. Therefore, we have enormous opportunities to utilize the same. Piezoelectric character of matter enables us to convert this mechanical vibration energy into electrical energy which can be stored and used to power other device, instead of being wasted. This work is done to realize both actuator and sensor in a cantilever beam based on piezoelectricity. The sensor part is called vibration energy harvester. The numerical analyses were performed for the cantilever beam using the commercial package ANSYS and MATLAB. The cantilever beam is realized by taking a plate and fixing its one end between two massive plates. Two PZT patches were glued to the beam on its two faces. Experiments were performed using data acquisition system (DAQ) and LABVIEW software for actuating and sensing the vibration of the cantilever beam.
Resumo:
Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts drug cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.
Resumo:
The present investigation deals with grain boundary engineering of a modified austenitic stainless steel to obtain a material with enhanced properties. Three types of processing that are generally in agreement with the principles of grain boundary engineering were carried out. The parameters for each of the processing routes were fine-tuned and optimized. The as-processed samples were characterized for microstructure and texture. The influence of processing on properties was estimated by evaluating the room temperature mechanical properties through micro-tensile tests. It was possible to obtain remarkably high fractions of CSL boundaries in certain samples. The results of the micro-tensile tests indicate that the grain boundary engineered samples exhibited higher ductility than the conventionally processed samples. The investigation provides a detailed account of the approach to be adopted for GBE processing of this grade of steel. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.
Resumo:
A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an ``ensemble measure of fabric in sands''. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.
Resumo:
Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.