260 resultados para energy gain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the synthesis of CdSe magic-sized clusters (MSCs) and their evolution into 1D rod and wires retaining the diameter of the order of MSCs. At the beginning of the reaction, different classes of stable MSCs with band gaps of 3.02 eV and 2.57 eV are formed, which exhibit sharp band edge photoluminescence features with FWHM in the order of similar to 13 nm. Reaction annealing time was carried out in order to monitor the shape evolution of the MSCs. We find that magic sized CdSe evolve into 1D rod and wires retaining the same diameter upon increasing annealing time. We observed the gradual emergence of new red shifted emission peaks during this shape evolution process, which emerge as a result of one dimensional energy transfer within the magic sized clusters during their subsequent transformation into rods and wires. The smallest, the second smallest sized MSC and the wires sequentially act as donors and acceptors during the size evolution from small MSCs to larger ones, and then eventually to wires. Steady-state and time-resolved luminescent spectroscopy revealed Forster resonance energy transfer (FRET) between the MSCs to the rods and wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an �ultrasonic nuclei manipulator (UNM)�. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.