263 resultados para electrochemical noise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise-predictive maximum likelihood (NPML) is a well known signal detection technique used in partial response maximum likelihood (PRML) scheme in 1D magnetic recording channels. The noise samples colored by the partial response (PR) equalizer are predicted/ whitened during the signal detection using a Viterbi detector. In this paper, we propose an extension of the NPML technique for signal detection in 2D ISI channels. The impact of noise prediction during signal detection is studied in PRML scheme for a particular choice of 2D ISI channel and PR targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow intrinsic fluctuations of resistance, also known as the flicker noise or 1/f-noise, in the surface transport of strong topological insulators (TIs) is a poorly understood phenomenon. Here, we have systematically explored the 1/f-noise in field-effect transistors (FET) of mechanically exfoliated Bi1.6Sb0.4Te2Se TI films when transport occurs predominantly via the surface states. We find that the slow kinetics of the charge disorder within the bulk of the TI induces mobility fluctuations at the surface, providing a new source of intrinsic 1/f-noise that is unique to bulk TI systems. At small channel thickness, the noise magnitude can be extremely small, corresponding to the phenomenological Hooge parameter gamma(H) as low as approximate to 10(-4), but it increases rapidly when channel thickness exceeds similar to 1 mu m. From the temperature (T)-dependence of noise, which displayed sharp peaks at characteristic values of T, we identified generation-recombination processes from interband transitions within the TI bulk as the dominant source of the mobility fluctuations in surface transport. Our experiment not only establishes an intrinsic microscopic origin of noise in TI surface channels, but also reveals a unique spectroscopic information on the impurity bands that can be useful in bulk TI systems in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain boundaries (GBs) are undesired in large area layered 2D materials as they degrade the device quality and their electronic performance. Here we show that the grain boundaries in graphene which induce additional scattering of carriers in the conduction channel also act as an additional and strong source of electrical noise especially at the room temperature. From graphene field effect transistors consisting of single GB, we find that the electrical noise across the graphene GBs can be nearly 10 000 times larger than the noise from equivalent dimensions in single crystalline graphene. At high carrier densities (n), the noise magnitude across the GBs decreases as proportional to 1/n, suggesting Hooge-type mobility fluctuations, whereas at low n close to the Dirac point, the noise magnitude could be quantitatively described by the fluctuations in the number of propagating modes across the GB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN graphene hBN devices. Here, we present the low frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.