306 resultados para distribution shape


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data (sin theta/lambda)(max) = 1.1 angstrom(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds, in which the N3-H3B center dot center dot center dot N1 and N3-H3A center dot center dot center dot O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N center dot center dot center dot H and O center dot center dot center dot H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the pi-electron cloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model has been developed to simulate the foam characteristics obtained, when chemical (water) and physical (Freon) blowing agents are used together for the formation of polyurethane foams. The model considers the rate of reaction, the consequent rise in temperature of the reaction mixture, nucleation of bubbles, and mass transfer of CO2 and Freon to them till the time of gelation. The model is able to explain the experimental results available in literature. It further predicts that the nucleation period gets reduced with increase in water (at constant Freon content), whereas with increase in Freon (at constant water) concentration nucleation period decreases marginally leading to narrower bubble-size distribution. By the use of uniform sized nuclei added initially, the model predicts that the bubble-size distribution can be made independent of the rate of homogeneous nucleation and can, thus, offer an extra parameter for its control. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shape dynamics of droplets exposed to an air jet at intermediate droplet Reynolds numbers is investigated. High speed imaging and hot-wire anemometry are employed to examine the mechanism of droplet oscillation. The theory that the vortex shedding behind the droplet induces oscillation is examined. In these experiments, no particular dominant frequency is found in the wake region of the droplet. Hence the inherent free-stream disturbances prove to be driving the droplet oscillations. The modes of droplet oscillation show a band of dominant frequencies near the corresponding natural frequency, further proving that there is no particular forcing frequency involved. In the frequency spectrum of the lowest mode of oscillation for glycerol at the highest Reynolds number, no response is observed below the threshold frequency corresponding to the viscous dissipation time scale. This selective suppression of lower frequencies in the case of glycerol is corroborated by scaling arguments. The influence of surface tension on the droplet oscillation is studied using ethanol as a test fluid. Since a lower surface tension reduces the natural frequency, ethanol shows lower excited frequencies. The oscillation levels of different fluids are quantified using the droplet aspect ratio and correlated in terms of Weber number and Ohnesorge number. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish diversity (77 species) in the Aghanashini River estuary of the Indian west coast is linked to variable salinity conditions and zones I, II and III for high, medium and low salinity respectively. Zone I, the junction between Arabian Sea and the estuary, had all species in yearly succession due to freshwater conditions in monsoon to high salinity in pre-monsoon. The medium (zone II) and low (zone III) salinity mid and upstream portions had maximum of 67 and 39 fish species respectively. Maintenance of natural salinity regimes in estuary, among other ecological factors, is critical for its fish diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Pt nanoparticles were produced from a reaction mixture containing a trace amount of cobalt carbonyl salt acting as a shape inducer. Nanoparticle shape evolution during reaction mixture reflux was monitored by characterizing particles extracted from the reaction mixture at different times. It was observed that 5 min of reflux produced spherical nanoparticles, 30 min of reflux produced cube shaped nanoparticles, and 60 min of reflux produced truncated octahedron morphology nanoparticles. It is illustrated that during nanoparticle synthesis the reflux process can provide energy needed for shape transformation from a metastable cube morphology to a truncated octahedron morphology which is thermodynamically the most stable geometry for fcc crystals. An optimization of the reaction reflux is thus needed for isolating metastable shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-Fe-Ga-based alloys form a new class of ferromagnetic shape memory alloys (FSMAs) that show considerable formability because of the presence of a disordered fcc gamma-phase. The current study explores the deformation processing of this alloy using an off-stoichiometric Ni55Fe59Ga26 alloy that contains the ductile gamma-phase. The hot deformation behavior of this alloy has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression tests in the 1123-1323 K temperature range and strain rate range of 10(-3)-10 s(-1) and using a combination of constitutive modeling and processing map. The dynamic recrystallization (DRX) regime for thermomechanical processing has been identified for this Heusler alloy on the basis of the processing maps and the deformed microstructures. This alloy also shows evidence of dynamic strain-aging (DSA) effect which has not been reported so far for any Heusler FSMAs. Similar effect is also noticed in a Ni-Mn-Ga-based Heusler alloy which is devoid of any gamma-phase. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Content Distribution Networks (CDNs) are widely used to distribute data to large number of users. Traditionally, content is being replicated among a number of surrogate servers, leading to high operational costs. In this context, Peer-to-Peer (P2P) CDNs have emerged as a viable alternative. An issue of concern in P2P networks is that of free riders, i.e., selfish peers who download files and leave without uploading anything in return. Free riding must be discouraged. In this paper, we propose a criterion, the Give-and-Take (G&T) criterion, that disallows free riders. Incorporating the G&T criterion in our model, we study a problem that arises naturally when a new peer enters the system: viz., the problem of downloading a `universe' of segments, scattered among other peers, at low cost. We analyse this hard problem, and characterize the optimal download cost under the G&T criterion. We propose an optimal algorithm, and provide a sub-optimal algorithm that is nearly optimal, but runs much more quickly; this provides an attractive balance between running time and performance. Finally, we compare the performance of our algorithms with that of a few existing P2P downloading strategies in use. We also study the computation time for prescribing the strategy for initial segment and peer selection for the newly arrived peer for various existing and proposed algorithms, and quantify cost-computation time trade-offs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent plastic deformation induced by mechanical contacts affects the shape recovery of shape memory alloys. To understand the shape recovery of NiTiCu thin films subjected to local contact stresses, systematic investigations are carried out by inducing varying levels of contact stresses using nanoindentation. The resulting indents are located precisely for imaging using a predetermined array consisting of different sized indents. Morphology and topography of these indents before and after shape recovery are characterized using Scanning Electron Microscope and Atomic Force Microscope quantitatively. Shape recovery is found to be dependent on the contact stresses at the low loads while the recovery ratio remains constant at 0.13 for higher loads. Shape recovery is found to occur mainly in depth direction of the indent, while far field residual stresses play very little role in the recovery. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.