298 resultados para controlled pore glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of hydrogen (H) charging on the shear yield strength (tau(max)) and shear transformation zone volume (Omega) of Ni-Nb-Zr metallic glass ribbons, with varying Zr content, were studied through the first pop-in loads during nanoindentation. Weight gain measurements after H charging and desorption studies were utilized to identify how the total H absorbed during charging is partitioned into mobile and immobile (or trapped) parts. These, in turn, indicate the significant role of H mobility in the amorphous structure on the yielding behavior. In high-Zr alloys, tau(max) increases significantly whereas Omega decreases. In low-Zr alloys, a slight decrease in tau(max) and increase in Omega were noted. These experimental observations are rationalized in terms of the mobility of the absorbed H in the amorphous structure and the possible role of it in the shear transformation zone dynamics during deformation of the metallic glass. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature (300-973K) and frequency (100Hz-10MHz) response of the dielectric and impedance characteristics of 2BaO-0.5Na(2)O-2.5Nb(2)O(5)-4.5B(2)O(3) glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100Hz-10MHz) and temperature (300-600K). The temperature coefficient of dielectric constant was 8 +/- 3ppm/K in the 300-600K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal-glass interface, leading to a high value of effective dielectric constant especially for the samples heat-treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (P-r) increased with the increase in crystallite size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of estimation of the time-variant reliability of actively controlled structural dynamical systems under stochastic excitations is considered. Monte Carlo simulations, reinforced with Girsanov transformation-based sampling variance reduction, are used to tackle the problem. In this approach, the external excitations are biased by an additional artificial control force. The conflicting objectives of the two control forces-one designed to reduce structural responses and the other to promote limit-state violations (but to reduce sampling variance)-are noted. The control for variance reduction is fashioned after design-point oscillations based on a first-order reliability method. It is shown that for structures that are amenable to laboratory testing, the reliability can be estimated experimentally with reduced testing times by devising a procedure based on the ideas of the Girsanov transformation. Illustrative examples include studies on a building frame with a magnetorheologic damper-based isolation system subject to nonstationary random earthquake excitations. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microfluidic/optofluidic microscopy is a versatile modality for imaging and analyzing properties of cells/particles while they are in flow. In this paper, we demonstrate the integration of fused silica microfluidics fabricated using femtosecond laser machining into optofluidic imaging systems. By using glass for the sample stage of our microscope, we have exploited its superior optical quality for imaging and bio-compatibility. By integrating these glass microfluidic devices into a custom-built bright field microscope, we have been able to image red blood cells in flow with high-throughputs and good fidelity. In addition, we also demonstrate imaging as well as detection of fluorescent beads with these microfluidic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain better materials, control over the precise location of nanoparticles is indispensable. It is shown here that ordered arrangements of nanoparticles, possessing different characteristics (electrical/ magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiation, the key parameters of high electrical conductivity and large dielectric/magnetic loss are targeted here by including a conductive material multiwall carbon nanotubes, MWNTs], ferroelectric nanostructured material with associated relaxations in the GHz frequency barium titanate, BT] and lossy ferromagnetic nanoparticles nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs were modified using an electron acceptor molecule, a derivative of perylenediimide, which facilitates p-p stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, an ordered arrangement can be tailored. To accomplish this, both BT and NF were first hydroxylated followed by the introduction of amine-terminal groups on the surface. The latter facilitated nucleophilic substitution reactions with PC and resulted in their precise location. In this study, we have shown for the first time that by a compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection losses were ca. -18 dB (for the MWNT/BT mixture) and -29 dB (for the MWNT/NF mixture), and the shielding occurred primarily through reflection. Interestingly, by adopting the compartmentalized approach wherein the lossy materials were in the PC phase and the conductive materials (MWNT) were in the PVDF phase, outstanding reflection losses of ca. -57 dB (for the BT and MWNT combination) and -67 dB (for the NF and MWNT combination) were noted and the shielding occurred primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.