337 resultados para constituent ordering
Resumo:
We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.
Resumo:
Transaction processing is a key constituent of the IT workload of commercial enterprises (e.g., banks, insurance companies). Even today, in many large enterprises, transaction processing is done by legacy "batch" applications, which run offline and process accumulated transactions. Developers acknowledge the presence of multiple loosely coupled pieces of functionality within individual applications. Identifying such pieces of functionality (which we call "services") is desirable for the maintenance and evolution of these legacy applications. This is a hard problem, which enterprises grapple with, and one without satisfactory automated solutions. In this paper, we propose a novel static-analysis-based solution to the problem of identifying services within transaction-processing programs. We provide a formal characterization of services in terms of control-flow and data-flow properties, which is well-suited to the idioms commonly exhibited by business applications. Our technique combines program slicing with the detection of conditional code regions to identify services in accordance with our characterization. A preliminary evaluation, based on a manual analysis of three real business programs, indicates that our approach can be effective in identifying useful services from batch applications.
Resumo:
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Inter-domain linkers (IDLs)' bridge flanking domains and support inter-domain communication in multi-domain proteins. Their sequence and conformational preferences enable them to carry out varied functions. They also provide sufficient flexibility to facilitate domain motions and, in conjunction with the interacting interfaces, they also regulate the inter-domain geometry (IDG). In spite of the basic intuitive understanding of the inter-domain orientations with respect to linker conformations and interfaces, we still do not entirely understand the precise relationship among the three. We show that IDG is evolutionarily well conserved and is constrained by the domain-domain interface interactions. The IDLs modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. Results of our analysis provide guidelines in modelling of multi-domain proteins from the tertiary structures of constituent domain components.
Resumo:
Two-dimensional triangular-lattice antiferromagnetic systems continue to be an interesting area in condensed matter physics and LiNiO2 is one such among them. Here we present a detailed experimental magnetic study of the quasi-stoichiometric LixNi2-xO2 system (0.67
Resumo:
For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.
Resumo:
An organometallic building block 1,3,5-tris(4-trans-Pt(PEt3)(2)I(ethynyl)phenyl)benzene (1) incorporating Pt-ethynyl functionality has been synthesized and characterized. 2 + 3] self-assembly of its nitrate analogue 1,3,5-tris(4-trans-Pt(PEt3)(2)(ONO2)(ethynyl)phenyl)benzene (2) with ``clip'' type bidentate donors (L-1-L-3) separately afforded three trigonal prismatic architectures (3a-3c), respectively. All these prisms were characterized and their shapes/sizes are predicted through geometry optimization employing molecular mechanics universal force field (MMUFF) simulation. The extended p-conjugation including the presence of Pt-ethynyl functionality makes them electron rich as well as luminescent in nature. Macrocycles 3b and 3c exhibit fluorescence quenching in solution upon addition of picric acid PA], which is a common constituent of many explosives. Interestingly, the non-responsive nature of fluorescent intensity towards other electron-deficient nitro-aromatic explosives (NAEs) makes them promising selective sensors for PA with a detection limit predicted to be ppb level. Furthermore, solid-state quenching of fluorescent intensity of the thin film of 3b upon exposure to saturated vapor of picric acid has drawn special attention for infield applications.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
The phase formation behaviour of the magnetoelectric multiferroic 0.8BiFeO(3)-0.2PbTiO(3) was studied as a function of heat treatment at different temperatures of a sol-gel derived powder. While under ordinary synthesis conditions this composition exhibits antiferromagnetic ordering and a rhombohedral structure; the sol-gel-enabled low-temperature synthesis could stabilize a tetragonal metastable phase along with the stable rhombohedral phase, mimicking a morphotropic phase boundary state. The phase coexistence state exhibits relatively enhanced ferromagnetic correlation. The same system with a relatively higher PbTiO3 concentration, 0.65BiFeO(3)-0.35PbTiO(3), on the other hand, exhibits a rhombohedral metastable phase. These results suggest that the occurrence of metastable phases is a very common feature in the BiFeO3-PbTiO3 magnetoelectric ferroelectric system and that it affects the ferroelectric and magnetic properties of system quite remarkably.
Resumo:
The magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below similar to 3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole dipole interactions.
Resumo:
In peptide and protein structures, occurrence of (phi,psi.) angles in the disallowed region of the Ramachandran map almost always suggests local regions of error or poor accuracy. However, very rarely genuine disallowed conformations occur as noted in the current study in proteins of known structure available at ultra-high resolution (<= 1.2 (A) over circle). In the current work, extent of conservation of genuine disallowed conformations in homologous proteins of known structures has been analyzed. From a dataset of 124 protein domain families, with structure of at least one constituent member in each family available at a resolution of 1.2 (A) over circle or better, we have analyzed the conservation of 221 disallowed conformations. It is observed that the disallowed conformation is only moderately conservedin protein domain families. In the gross dataset no particular residue type adopting disallowed conformation elicit high conservation of residue type though there are alignment positions in the dataset with complete conservation of both the residue type and the disallowed conformation. Conserved disallowed conformation in protein domain families play biologically significant role in roughly 50% of the cases. The residues with the disallowed conformation or its flanking residues are often located within or around the functional site of the protein. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Detailed magnetization and magneto-transport measurements studies are carried out to unearth the anomalous magnetism of Pr in PrCoAsO compound. The studied PrCoAsO sample is single phase and crystallized in the tetragonal structure with space group P4/nmm in analogy of ZrCuSiAs type compounds. Detailed magnetization measurements showed that Co moments in PrCoAsO exhibit weakly itinerant ferromagnetic Co spins ordering at below 80 K with a small magnetic moments of similar to 0.12 mu B/f.u. High temperatures Curie-Weiss fit, resulted in effective paramagnetic moment mu(eff) (exp) of 5.91 mu(B)/f.u., which can be theoretically assigned to 3d Co (3.88 mu(B)) and 4f Pr (3.58 mu(B)). Further, a positive Curie-Weiss temperature (Theta) of 136 K is seen, indicating predominant ferromagnetic interactions in PrCoAsO. Detailed transport measurements showed that PrCoAsO exhibit metallic behavior and negative magneto-resistance below ferro-magnetically (FM) ordered state. Surprisingly, the situation of PrCoAsO is similar to non magnetic La containing LaCoAsO and strikingly different than that as reported for magnetic Nd, Sm and Gd i.e., (Nd/Sm/Gd)CoAsO. The magnetic behavior of PrCoAsO being closed to LaCoAsO and strikingly different to that of (Nd/Sm/Gd)CoAsO is unusual. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
The effect of high pressure on reduced graphene oxide (RGO) has been investigated using X-ray diffraction (XRD) and infrared (IR) absorption spectroscopy. Our XRD measurements show two-step reversible compression in the inter-layer spacing of RGO whereas intra-layer ordering exhibits a high pressure behavior similar to that of graphite up to 20 GPa. The line shape analysis of (100) peak, representing the intra-layer ordering, suggests presence of local out of plane distortions in RGO in the form of puckered regions which progressively straighten out as a function of pressure. IR measurements show reversible changes in spectroscopic features attributed to remnant functional groups in the inter-layer region. These measurements suggest high stability and recovering ability of RGO under pressure cycling. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Resumo:
Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.