296 resultados para Weierstrass curves


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The periodic 3D Navier-Stokes equations are analyzed in terms of dimensionless, scaled, L-2m-norms of vorticity D-m (1 <= m <= infinity). The first in this hierarchy, D-1, is the global enstrophy. Three regimes naturally occur in the D-1-D-m plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime 1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experiments using three point bend specimens of Mg single crystals have revealed that tensile twins of {10 (1) over bar2}-type form profusely near a notch tip and enhance the fracture toughness through large plastic dissipation. In this work, 3D finite element simulations of these experiments are carried out using a crystal plasticity framework which includes slip and twinning to gain insights on the mechanics of fracture. The predicted load-displacement curves, slip and tensile twinning activities from finite element analysis corroborate well with the experimental observations. The numerical results are used to explore the 3D nature of the crack tip stress, plastic slip and twin volume fraction distributions near the notch root. The occurrence of tensile twinning is rationalized from the variation of normal stress ahead of the notch tip. Further, deflection of the crack path at twin-twin intersections observed in the experiments is examined from an energy standpoint by modeling discrete twins close to the notch root.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusual low-temperature magneto-resistance (MR) of ferromagnetic Sr2FeMoO6 polycrystals has been attributed to magnetically hard grain boundaries which act as spin valves. We detected the different magnetic hysteresis curves for the grains and the grain boundaries of polycrystalline Sr2FeMoO6 by utilizing the different probing depths of the different detection modes of x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD), namely, the total electron yield (TEY) mode (probing depth similar to 5 nm) and the total fluorescence yield (TFY) mode (probing depth similar to 100 nm). At 20 K, the magnetic coercivity detected in the TEY mode (H-c,H- TEY) was several times larger than that in the TFY mode (H-c,H- TFY), indicating harder ferromagnetism of the grain boundaries than that of the grains. At room temperature, the grain boundary magnetism became soft and H-c,H- TEY and H-c,H- TFY were nearly the same. From the line-shape analysis of the XAS and XMCD spectra, we found that in the grain boundary region the ferromagnetic component is dominated by Fe2+ or well-screened signals, while the non-magnetic component is dominated by Fe3+ or poorly screened signals. Copyright (C) EPLA, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 degrees C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 594 nm (D-5(0) -> F-7(1)). The evaluated Commission International de l'Eclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition probability (A(tot)), radiative lifetime (tau(rad)), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were calculated using the Judd-Ofelt theory. The experimental decay curves of the D-5(0) level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (tau(exp)), low non-radiative relaxation rate (W-NR), high quantum efficiency (eta) and better optical gain (sigma(e) x tau(rad)). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quasigeostrophic turbulence on a beta-plane with a finite deformation radius is studied numerically, with particular emphasis on frequency and combined wavenumber-frequency domain analyses. Under suitable conditions, simulations with small-scale random forcing and large-scale drag exhibit a spontaneous formation of multiple zonal jets. The first hint of wave-like features is seen in the distribution of kinetic energy as a function of frequency; specifically, for progressively larger deformation scales, there are systematic departures in the form of isolated peaks (at progressively higher frequencies) from a power-law scaling. Concomitantly, there is an inverse flux of kinetic energy in frequency space which extends to lower frequencies for smaller deformation scales. The identification of these peaks as Rossby waves is made possible by examining the energy spectrum in frequency-zonal wavenumber and frequency-meridional wavenumber diagrams. In fact, the modified Rhines scale turns out to be a useful measure of the dominant meridional wavenumber of the modulating Rossby waves; once this is fixed, apart from a spectral peak at the origin (the steady jet), almost all the energy is contained in westward propagating disturbances that follow the theoretical Rossby dispersion relation. Quite consistently, noting that the zonal scale of the modulating waves is restricted to the first few wavenumbers, the energy spectrum is almost entirely contained within the corresponding Rossby dispersion curves on a frequency-meridional wavenumber diagram. Cases when jets do not form are also considered; once again, there is a hint of Rossby wave activity, though the spectral peaks are quite muted. Further, the kinetic energy scaling in frequency domain follows a -5/3 power-law and is distributed much more broadly in frequency-wavenumber diagrams. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanoindentation technique was employed to examine the strain rate sensitivity, m, and its dependence on the structural state of a Zr-based bulk metallic glass (BMG). The free volume content in the BMG was varied by examining samples in the as-cast (AC), shot-peened (SP), and structurally relaxed (SR) states. Hardness values measured at different loading rates and over a temperature range of 300-423 K as well as the strain-rate jump tests conducted in the quasi-static regime at room temperature, show that m is always negative. All the load-displacement (P-h) curves in this temperature regime exhibit serrated load-displacement responses, indicating that the shear band mediated inhomogeneous plastic flow governs deformation. Such localization of flow and associated softening is the raison d'etre for the negative m. Significant levels of pile-up around the indents were also noted. The order in the average values of hardness, pile-up heights, and the displacement bursts on the P-h curves was always such that SR > AC > SP, which is also the order of increasing free volume content. These observations were utilized to discuss the reasons for the negative strain rate sensitivity, and its dependence on the structural state of metallic glasses. It is suggested that the positive values of m reported in the literature for them are possibly experimental artefacts that arise due to large pile ups around the indents which lead to erroneous estimation in hardness values. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Storage of water within a river basin is often estimated by analyzing recession flow curves as it cannot be `instantly' estimated with the aid of available technologies. In this study we explicitly deal with the issue of estimation of `drainable' storage, which is equal to the area under the `complete' recession flow curve (i.e. a discharge vs. time curve where discharge continuously decreases till it approaches zero). But a major challenge in this regard is that recession curves are rarely `complete' due to short inter-storm time intervals. Therefore, it is essential to analyze and model recession flows meaningfully. We adopt the wellknown Brutsaert and Nieber analytical method that expresses time derivative of discharge (dQ/dt) as a power law function of Q : -dQ/dt = kQ(alpha). However, the problem with dQ/dt-Q analysis is that it is not suitable for late recession flows. Traditional studies often compute alpha considering early recession flows and assume that its value is constant for the whole recession event. But this approach gives unrealistic results when alpha >= 2, a common case. We address this issue here by using the recently proposed geomorphological recession flow model (GRFM) that exploits the dynamics of active drainage networks. According to the model, alpha is close to 2 for early recession flows and 0 for late recession flows. We then derive a simple expression for drainable storage in terms the power law coefficient k, obtained by considering early recession flows only, and basin area. Using 121 complete recession curves from 27 USGS basins we show that predicted drainable storage matches well with observed drainable storage, indicating that the model can also reliably estimate drainable storage for `incomplete' recession events to address many challenges related to water resources. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.