336 resultados para Wave motion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a unified study of the effect of periodic, quasiperiodic, and disordered potentials on topological phases that are characterized by Majorana end modes in one-dimensional p-wave superconducting systems. We define a topological invariant derived from the equations of motion for Majorana modes and, as our first application, employ it to characterize the phase diagram for simple periodic structures. Our general result is a relation between the topological invariant and the normal state localization length. This link allows us to leverage the considerable literature on localization physics and obtain the topological phase diagrams and their salient features for quasiperiodic and disordered systems for the entire region of parameter space. DOI: 10.1103/PhysRevLett.110.146404

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of high enthalpy shock wave on graphitic carbon nanoparticle (GCNP) films has been investigated and discussed in view of space and chemical engineering applications. The GCNP films were developed by using spray method and exposed to high enthalpy shock wave under an inert atmosphere. Upon shock wave treatment, two typical amendments such as weight loss in the deposited material and growth of second order nanostructures (SONS) have been observed. While increasing test gas pressure, the loss of material and density of SONs are gradually increased. Most of the shock wave induced SONS are highly crystalline and belong to the cubic diamond structure. Upon shock treatment as well as with increase of test gas pressure, a considerable improvement in the quality of GCNP films has been observed. Further, ablation of GCNPs exclusively on the top surface of the coatings and formation of hierarchical NPs (diamond NPs on GCNPs) has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the wave propagation analysis of built-up composite structures is performed using frequency domain spectral finite elements, to study the high frequency wave responses. The paper discusses basically two methods for modeling stiffened structures. In the first method, the concept of assembly of 2D spectral plate elements is used to model a built-up structure. In the second approach, spectral finite element method (SFEM) model is developed to model skin-stiffener structures, where the skin is considered as plate element and the stiffener as beam element. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also extended to model the stiffened structures with different cross sections such as T-section, I-section and hat section. A number of parametric studies are performed to capture the mode coupling, that is, the flexural-axial coupling present in the wave responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.