284 resultados para Theoretical values
Resumo:
CONSPECTUS: Transition metals help to stabilize highly strained organic fragments. Metallacycles, especially unsaturated ones, provide much variety in this area. We had a sustained interest in understanding new C-C bond formation reactions affected by binuclear transition metal fragments Cp2M. One such study led to the exploration of the bimetallic C-C cleavage and coupled complexes, where the acetylide ligands bridge two metal atoms. The underlying M-C interaction in these complexes inspired the synthesis of a five-membered cyclocumulene complex, which opened a new phase in organometallic chemistry. The metallacyclocumulene produces a variety of C-C cleavage and coupled products including a radialene complex. Group 4 metallocenes have thus unlocked a fascinating chemistry by stabilizing strained unsaturated C4 organic fragments in the form of five-membered metallacyclocumulenes, metallacyclopentynes, and metallacycloallenes. Over the years, we have carried out a comprehensive theoretical study to understand the unusual stability and reactivity of these metallacycles. The unique (M-C-beta) interaction of the internal carbon atoms with the metal atom is the reason for unusual stability of the metallacycles. We have also shown that there is a definite dependence of the C-C coupling and cleavage reactions on the metal of metallacyclocumulenes. It demonstrates unexpected reaction pathways for these reactions. Based on this understanding, we have predicted and unraveled the stabilization factors of an unusual four-membered metallacycloallene complex. Indeed, our prediction about a four-membered heterometallacycle has led to an interesting bonding situation, which is experimentally realized. This type of M-C bonding is intriguing from a fundamental perspective and has great relevance in synthesizing unusual structures with interesting properties. In this Account, we first give a short prologue of what led to the present study and describe the salient features of the structure and bonding of the metallacyclocumulenes. The unusual reaction pathway of this metallacycle is explored next. Similar features of the metallacyclopentynes and metallacycloallenes are briefly mentioned. Then, we discuss the exploitation of the unique M-C bonding to design some exotic molecules such as a four-membered metallacycloallene complex. Our efforts to build a conceptual framework to understand these metallacycles and to exploit their chemistry continue.
Resumo:
In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.
Resumo:
The 11-year sunspot cycle has many irregularities, the most prominent amongst them being the grand minima when sunspots may not be seen for several cycles. After summarizing the relevant observational data about the irregularities, we introduce the flux transport dynamo model, the currently most successful theoretical model for explaining the 11-year sunspot cycle. Then we analyze the respective roles of nonlinearities and random fluctuations in creating the irregularities. We also discuss how it has recently been realized that the fluctuations in meridional circulation also can be a source of irregularities. We end by pointing out that fluctuations in the poloidal field generation and fluctuations in meridional circulation together can explain the occurrences of grand minima.
Resumo:
The ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets, has been determined by using the upper bound theorem of the limit analysis in conjunction with finite elements and linear optimization. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (N-c and N-gamma) with an inclusion of the reinforcement has been computed in terms of the efficiency factors eta(c) and eta(gamma). The results have been obtained (i) for different values of phi in case of fully granular (c=0) and c-phi soils, and (ii) for different rates (m) at which the cohesion increases with depth for a purely cohesive soil (phi=0 degrees). The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in phi. The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The results obtained from the study are found to compare well with the available theoretical and experimental data reported in literature. (C) 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
For a general tripartite system in some pure state, an observer possessing any two parts will see them in a mixed state. By the consequence of Hughston-Jozsa-Wootters theorem, each basis set of local measurement on the third part will correspond to a particular decomposition of the bipartite mixed state into a weighted sum of pure states. It is possible to associate an average bipartite entanglement ((S) over bar) with each of these decompositions. The maximum value of (S) over bar is called the entanglement of assistance (E-A) while the minimum value is called the entanglement of formation (E-F). An appropriate choice of the basis set of local measurement will correspond to an optimal value of (S) over bar; we find here a generic optimality condition for the choice of the basis set. In the present context, we analyze the tripartite states W and GHZ and show how they are fundamentally different. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Modulus variation of NiTi shape memory alloy has been investigated at microstructural level through nano dynamical mechanical analysis and compared with bulk experimental measurements. The differences between the modulus values at the macro and micro level as well as within the micro level are discussed and the corresponding variations have been explained based on the crystal structure, orientation and misorientation. The experimental results confirm a higher modulus value for the martensite phase that is in agreement with the theoretical predictions. (C) 2015 Elsevier B. V. All rights reserved.
Resumo:
The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of high molecular weight esters such as bis (2-ethylhexyl) sebacate is of significance for its use as a lubricant. This ester is synthesized by the transesterification of dimethyl sebacate with 2-ethylhexanol. Therefore, the solubilities of bis (2-ethylhexyl) sebacate and dimethyl sebacate were determined at 308-328 K at pressures of 10-18 MPa in supercritical carbon dioxide. The solubility of dimethyl sebacate was always higher than bis (2-ethylhexyl) sebacate at a given temperature and pressure. The Mendez-Teja model was used to verify the self-consistency of data. Further, a new semi-empirical model with three parameters was developed using the solution theory coupled with Wilson activity coefficient. This model was used to correlate the experimental data of this work and solubilities of many high molecular weight esters reported in the literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry A(CP) in b -> s gamma decay that may be as large as 3 %, so future measurements of ACP may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the B-s meson mass mixing term Delta M-Bs are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, Delta M-Bs could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the h(2,3)tau(+)tau(-) and h(2,3) (t) over bart couplings can be quite large, and so may offer interesting prospects for future pp, e(+) e(-), mu(+) mu(-) and gamma gamma colliders.
Resumo:
The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H center dot center dot center dot F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)J(FH), and (1h)J(FN), provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and N-15-H-1 HSQC experiments. The H-1 DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.
Resumo:
We report a first principles study of the electronic properties for a contact formed between Nb-doped monolayer MoS2 and gold for different doping concentrations. We first focus on the shift of energy levels in band structure and the density of states with respect to the Fermi level for a geometrically optimized 5 x 5 MoS2 supercell for both pristine and Nb-doped structures. The doping is achieved by substituting Mo atoms with Nb atoms at random positions. It is observed that for an experimentally reported sheet hole doping concentration of (rho(2D)) 1.8 x 10(14) cm(-2), the pristine MoS2 converts to degenerate p-type semiconductor. Next, we interface this supercell with six layers of < 111 > cleaved surface of gold to investigate the contact nature of MoS2-Au system. By careful examination of projected band structure, projected density of states, effective potential and charge density difference, we demonstrate that the Schottky barrier nature observed for pure MoS2-Au contact can be converted from n-type to p-type by efficient Nb doping.
Resumo:
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.