405 resultados para TEMPERATURE RANGE 0400-1000 K
Resumo:
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011
Resumo:
The hot-working characteristics of IN-718 are studied in the temperature range 900 degrees C to 1200 degrees C and strain rate range 0.001 to 100 s(-1) using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 degrees C and 0.001 s(-1) with an efficiency of power dissipation of 37 pct and the other at 1200 degrees C and 0.1 s(-1) with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the delta(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 degrees C and 0.1 s(-1) and finish-forged at 950 degrees C and 0.001 s(-1) so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 degrees C and strain rates higher than 1 s(-1), the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150 degrees C and strain rates more than 1 s(-1), IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hot-working IN-718.
Resumo:
The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu2Ho2O5, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt,Cu2O + Cu2Ho2O5 + Ho2O3/(Y2O3)ZrO2/CuO + Cu2O,Pt in the temperature range of 973 to 1350 K. For the formation of Cu2Ho2O5 from its binary component oxides, 2CuO(s) + Ho2O3(S) --> Cu2Ho2O5(s) DELTAG-degrees = 11190 - 13.8T(+/- 120) J-mol-1 Since the formation is endothermic, CU2Ho2O5 becomes thermodynamically unstable with respect to CuO and Ho2O3 below 810 K. When the oxygen partial pressure over Cu2Ho2O5 is lowered, it decomposes according to the reaction 2Cu2Ho2O5(s) --> 2Ho2O3(s) + 2Cu2O(S) + O2(g) for which the equilibrium oxygen potential is given by DELTAmu(O2) = - 238510 + 160.2T(+/- 450) J.mol-1 The decomposition temperature at an oxygen partial pressure of 1.52 x 10(4) Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.
Resumo:
The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.
Resumo:
The chemical potentials oi carbon associated with two three-phase fields in the system U-Mo-C were measured by using the methane-hydrogen gas equilibration technique in the temperature range 973 to 1173K. The technique was validated by measuring the standard Gibbs energy of formation of Mo2C. From the experimentally measured values of the chemical potential of carbon in the ternary phase fields UC+Mo+UMoC1.7 and UC+UMoC1.7+UMoC2 and data for UC from the literature, the Gibbs energies of formation of the two ternary carbides were derived:
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.
Resumo:
The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.
Resumo:
This article presents dimensionless equations for the temperature dependence of the saturated liquid viscosity of R32, R123, R124, R125, R134a, R141b, and R152a valid over a temperature range of engineering interest. The correlation has the form Phi(D)(n)=A+BTD where Phi(D) is the dimensionless fluidity (1/eta(D)) and T-D is a dimensionless temperature. n, A, and B are evaluated for each of the above refrigerants based on a least-squares fit to experimental data. This equation is found to provide an improved fit over those existing in the literature up to T-D=0.8.
Resumo:
In this paper we propose to study the evolution of the quantum corrections to the conductivity in an oxide system as we approach the metal-insulator (M-I) transition from the metallic side. We report here the measurement of the low-temperature (0.1 K
Resumo:
Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.
Resumo:
Transport properties of quasicrystals in rapidly solidified as well as heat-treated Al65CU20Cr15 alloys were studied over a wide temperature range as a function of structure and microstructure. The characterization was done using x-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Particular attention was paid to primitive to face-centered quasicrystalline transformation which occurs on annealing and the effect of microstructures on the transport behavior. The temperature dependence of resistivity is found to depend crucially on the microstructure of the alloy. Further, ordering enhances the negative temperature coefficient of resistivity. The low-temperature (T less than or equal to 25 K) resistivity of Al65Cu20Cr15 has been compared with that of Al63.5Cu24.5Fe12 alloy. In this region p(T) can be well described by a root T contribution arising from electron-electron interaction. We discuss our results in view of current theories.
Resumo:
The Gibbs free energies of formation of strontium and barium zirconates have been determined in the temperature range 960 to 1210 K using electrochemical cells incorporating the respective alkaline-earth fluoride single crystals as solid electrolytes. Pure strontium and barium monoxides were used in the reference electrodes. During measurements on barium zirconate, the oxygen partial pressure in the gas phase over the electrodes was maintained at a low value of 18.7 Pa to minimize the solubility of barium peroxide in the monoxide phase. Strontium zirconate was found to undergo a phase transition from orthorhombic perovskite to) with space group Cmcm; D-2h(17) to tetragonal perovskite (t) having the space group 14/mcm; D-4h(18) at 1123 (+/- 10) K. Barium zirconate does not appear to undergo a phase transition in the temperature range of measurement. It has the cubic perovskite (c) structure. The standard free energies of formation of the zirconates from their component binary oxides AO (A = Sr, Ba) with rock salt (rs) and ZrO2 with monoclinic (m) structures can be expressed by the following relations:SrO (rs) + ZrO2 (m) --> SrZrO3 (o) Delta G degrees = -74,880 - 14.2T (+/-200) J mol(-1) SrO (rs) + ZrO2 (m) --> SrZrO3 (t) Delta G degrees = -73,645 - 15.3T (+/-200) J mol(-1) BaO (rs) + ZrO2 (m) --> BaZrO4 (c) Delta G degrees = -127,760 - 1.79T (+/-250) J mol(-1) The results of this study are in reasonable agreement with calorimetric measurements reported in the literature. Systematic trends in the stability of alkaline-earth zirconates having the stoichiometry AZrO(3) are discussed.