288 resultados para Steady-state simulations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The addition of B, up to about 0.1 wt%, to Ti-6Al-4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475-550 degrees C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces - a direct consequence of the microstructural refinement that occurs with the B addition - that provide resistance to dislocation motion. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semiconducting Cu3BiS3 (CBS) thin films were deposited by co-evaporation of Cu, Bi elemental metallic precursors, with in situ sulphurisation, using a quartz effusion cell. Cu3BiS3 thin films were structurally characterized by XRD and FE-SEM. The chemical bonding of the ions was examined by XPS. As deposited films were demonstrated for metal-semiconductor-metal near IR photodectection under lamp and laser illuminations. The photo current amplified to three orders and two orders of magnitude upon the IR lamp and 60 m W cm(-2) 1064 nm IR laser illuminations, respectively. Larger grains, made up of nano needle bunches aided the transport of carriers. Transport properties were explained based on the trap assisted space charge conduction mechanism. Steady state detector parameters like responsivity varied from 1.04 AW(-1) at 60 m Wcm(-2) to 0.22 AW(-1) at 20 m Wcm(-2). Detector sensitivity of 295 was found to be promising and further could be tuned for better responsivity and efficiency in utilization of near infra-red photodetector. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system-copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current interferon alpha-based treatment of hepatitis C virus (HCV) infection fails to cure a sizeable fraction of patients treated. The cause of this treatment failure remains unknown. Here using mathematical modelling, we predict treatment failure to be a consequence of the emergent properties of the interferon-signalling network. HCV induces bistability in the network, creating a new steady state where it can persist. Cells that admit the new steady state alone are refractory to interferon. Using a model of viral kinetics, we show that when the fraction of cells refractory to interferon in a patient exceeds a critical value, treatment fails. Direct-acting antivirals that suppress HCV replication can eliminate the new steady state, restoring interferon sensitivity and improving treatment response. Our study thus presents a new conceptual basis of HCV persistence and treatment response, elucidates the origin of the synergy between interferon and direct-acting antivirals, and facilitates rational treatment optimization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transient natural convection flow with thermal stratification in a rectangular cavity filled with fluid saturated porous medium obeying Darcy's law has been studied. Prior to the time t* = 0, the flow in the cavity is assumed to be motionless and all four walls of the cavity are at the same constant temperature. At time t* = 0, the temperatures of the vertical walls are suddenly increased which vary linearly with the distance y and at the same time on the bottom wall an isothermal heat source is placed centrally. This sudden change in the wall temperatures gives rise to unsteadiness in the problem. The horizontal temperature difference induces and sustains a buoyancy driven flow in the cavity which is then controlled by the vertical temperature difference. The partial differential equations governing the transient natural convection flow have been solved numerically. The local and average Nusselt numbers decrease rapidly in a small time interval after the start of the impulsive change in the wall temperatures and the steady state is reached quickly. The time required to reach the steady state depends on the Rayleigh number and the thermal stratification parameter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solvent dependent and low temperature based Chalcopyrite CuIn1-xAlxS2 (CIAS) nano structures were synthesized by a simple one-pot solvothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and micro-Raman spectroscopy were used to characterize the nanostructures structurally and optically. CIAS hollow spheres were constructed from the nanoplates. Detailed formation mechanism of the hollow spheres was explained. Tentative optical phonon vibrational modes have been discussed. Steady state room temperature IR photodectection have been demonstrated with all the CIAS nanostructures under IR lamp illumination. Photo current was amplified by two orders and one order in case of nano needle like structures and hollow spheres respectively, which was explained based upon the trap assisted space charge. Growth and decay constants lasted for few milli seconds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators-with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.