261 resultados para Mesozoic rifting evolution
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 <= x <= 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn3+ and Fe3+, large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).
Resumo:
The Southern Granulite Terrain in India is a collage of crustal blocks ranging in age from Archean to Neoproterozoic. This study investigate the tectonic evolution of one of the northernmost block- the Biligiri Block (BRB) through a multidisciplinary approach involving field investigation, petrographic studies, LA-ICPMS zircon U-Pb geochronology, Hf isotopic analyses, metamorphic P-T phase diagram computations, and crustal thickness modeling. The garnet bearing quartzofeldspathic gneiss from the central BRB preserve Mesoarchean magmatic zircons with ages between 3207 and 2806 Ma and positive epsilon Hf value (+2.7) which possibly indicates vestiges of a Mesoarchean primitive continental crust. The occurrence of quartzite-iron formation intercalation as well as ultramafic lenses along the western boundary of the BRB is interpreted to indicate that the Kollegal structural lineament is a possible paleo-suture. Phase diagram computation of a metagabbro from the southwestern periphery of the Kollegal suture zone reveals high-pressure (similar to 18.5 kbar) and medium-temperature (similar to 840 degrees C) metamorphism, likely during eastward subduction of the Western Dharwar oceanic crust beneath the Mesoarchean BRB. In the model presented here, slab subduction, melting and underplating processes generated arc magmatism and subsequent charnockitization within the BRB between ca. 2650 Ma and ca. 2498 Ma. These results thus reveal Meso- to Neoarchean tectonic evolution of the BRB. The spatial variation of crustal thickness, derived from flexure inversion technique, provides additional constraints on the tectonic linkage of the BRB with its surrounding terrains. In conjunction with published data, the Moyar and the Kollegal suture zones are considered to mark the trace of ocean closure along which the Nilgiri and Biligiri Rangan Blocks accreted on to the Western Dharwar Craton. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.