520 resultados para Humic-acid
Resumo:
The conformational analysis of a protected homodipeptide of 1-aminocyclopentanecarboxylic acid (Acc5) has been carried out. 1H-nmr studies establish a ?-turn conformation for Boc-Acc5-Acc5-NHMe in chloroform and dimethylsulfoxide solutions involving the methylamide NH in an intramolecular hydrogen bond. Supportive evidence for the formation of an intramolecular hydrogen bond is obtained from ir studies. X-ray diffraction studies reveal a type III ?-turn conformation in the solid state stabilized by a 4 ? 1 hydrogen bond between the Boc CO and methylamide NH groups. The ?,? values for both Acc5 residues are close to those expected for an ideal 310-helical conformation (?? ± 60°, ?? ±30°).
Resumo:
Conformational energy calculations on the model system N-acetyl- 1 -aminocyclohexanecarboxylic acid N'methylamide (Ac-Acc6-NHMe), using an average geometry derived from 13 crystallographic observations, establish that the Acc6 residue is constrained to adopt conformations in the helical regions of In contrast, the a,a-dialkylated residue with linear hydrocarbon side chains, a,a-di-n-propylglycine favors fully extended backbone structures (6 1= $ = 180'). The crystal structures of two model peptides, Boc-(Acc6),-OMe (type 111 @-turn at -Acc6(1)-Acc6(2)-) and Boc-Pro-Acc6-Ala-OMe (type I1 P-turn at -Pro-Acc6-), establish that Acc6 residues can occupy either position of type 111 P-turns and the i + 2 position of type I1 @-turns. The stereochemical rigidity of these peptides is demonstrated in solution by NMR studies, which establish the presence of one intramolecular hydrogen bond in each peptide in CDCI, and (CDJ2S0. Nuclear Overhauser effects permit characterization of the @-turn conformations in solution and establish their similarity to the solid-state structures. The implications for the use of Acc6 residues in conformational design are considered.
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.
Resumo:
The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides
Resumo:
The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6
Resumo:
Preparation, thermal analysis and IR spectra of a number of transition metal hydrazidocarbonates have been described. Metal hydrazido carbonates decompose exothermically through oxalate and carbonate intermediates to the respective metal oxides. Reaction of ammonium carbonate with hydrazine hydrate yields hydrazinium derivative of hydrazidocarbonic acid; N2H3COON2H5
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.
Resumo:
Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.
Resumo:
The X-ray analysis of the tetranuclear copper(II) complex formed from pyridoxic acid and 2,2′-dipyridylamine reveals a novel metal binding mode of pyridoxic acid as a multibridged tetradentate dianion. Here the pyridoxic acid moiety uses all possible sites except the pyridine nitrogen for metal coordination.