271 resultados para HYDROXY-CIS-ALKENES
Resumo:
Reaction of [Ru2O(O(2)CR)(2)(MeCN)(4)(PPh(3))(2)](ClO4)(2) (1) with 1,2-diaminoethane (en) in MeOH-H2O yielded a mixture of products from which a diamagnetic ruthenium(II) complex [Ru(MeCN)(en)(2)(PPh(3))](ClO4)(2) (2) and a paramagnetic ruthenium(III) species [Ru(O(2)CR)(en)(2)(PPh(3))](BPh(4))(2) (3) (R = Ph, a; C6H4-p-Me, b; C6H4-p-OMe, c) were isolated and characterized. The crystal structure of complex 2, obtained by X-ray diffraction analysis, shows a cis arrangement of the unidentate ligands in this octahedral complex. Complex 3 displays an axial EPR spectrum. Complex 2 undergoes two successive irreversible metal-centred one-electron oxidation processes at 1.13 and 1.33 V vs SCE in MeCN-0.1 M [NBu(4)(n)]ClO4 at 50 mV s(-1). The mechanistic aspects of the core cleavage reactions in 1 are discussed.
Resumo:
A new, simple and preparatively useful protocol for the construction of a-vinyl ketones, particularly those bearing a quaternary carbon centre, from the corresponding alkenes has been devised. Our four-step strategy consists of dichloroketene addition, base catalysed ring contraction to 'push-pull' cyclopropane esters, reduction and eliminative cyclopropane fragmentation to unravel the a-vinyl ketone moiety. The generality of this approach has been demonstrated with a few representative olefins and good regio- and stereocontrol has been observed. As an application of this methodology, an enantioselective synthesis of sesquiterpene hydrocarbon (+)-alpha-elemene (42) from R-(+)-limonene (43) has been accomplished.
Resumo:
Total tRNAs isolated from chloroplasts and etioplasts of cucumber cotyledons were compared with respect to amino acid acceptance, isoacceptor distribution and extent of modification. Aminoacylation of the tRNAs with nine different amino acids studied indicated that the relative acceptor activities of chloroplast total tRNAs for four amino acids are significantly higher than etioplast total tRNAs. Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) of chloroplast total tRNAs separated at least 32 spots, while approximately 41 spots were resolved from etioplast total tRNAs. Comparison of the reversed-phase chromatography (RPC-5) profiles of chloroplast and etioplast leucyl-, lysyl-, phenylalanyl-, and valyl-tRNA species showed no qualitative differences in the elution profiles. However, leucyl-, lysyl- and valyl-tRNA species showed quantitative differences in the relative amounts of the isoaccepting species present in chloroplasts and etioplasts. The analysis of modified nucleotides of total tRNAs from the two plastid types indicated that total tRNA from etioplasts was undermodified with respect to ribothymidine, isopentenyladenosine/hydroxy-isopentenyladenosine, 1-methylguanosine and 2-o-methylguanosine. This indicates that illumination may cause de novo synthesis of chloroplast tRNA-modifying enzymes encoded for by nuclear genes leading to the formation of highly modified tRNAs in chloroplasts. Based on these results, we speculate that the observed decrease in levels of aminoacylation, variations in the relative amounts of certain isoacceptors, and differences in the electrophoretic mobilities of some extra tRNA spots in the etioplast total tRNAs as compared to chloroplast total tRNAs could be due to some partially undermodified etioplast tRNAs. Taken together, the data suggested that the light-induced transformation of etioplasts into chloroplasts is accompanied by increases in the relative levels of some functional chloroplast tRNAs by post transcriptional nucleotide modifications.
Resumo:
Cure kinetics for the formation of copolyurethane networks of various compositions based on hydroxy-terminated polybutadiene(HTPB), poly(12-hydroxy stearic acid-co-TMP) ester polyol(PEP), and different isocyanates has been studied through viscosity build up during the cure reaction. The viscosity (N)-time (t) plots conform to the equation N = ae(bt), where a and b are empirical constants, dependent on the composition and the nature of the polyols and the isocyanates. The rate constants (b) for viscosity build up, evaluated from the slopes of dN/dt versus N plots at different temperatures, were found to vary significantly from 0.0073 to 0.25 min(-1); and the activation energies for gelation were found to be in the range 20 to 40 kJ mol(-1). The results have been interpreted in terms of the dependence of the rate constants on structural characteristics of the prepolymers. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The enantioselective synthesis of the natural products cladospolide B, cladospolide C, and iso-cladospolide B has been accomplished from tartaric acid. Key reactions in the synthetic sequence include the elaboration of a gamma-hydroxy amide derived from tartaric acid via alkene cross metathesis, Yamaguchi lactonization, and ring closing metathesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of some functionalised isomeric, symmetrical tetrathiafulvalene derivatives containing 4,5-(ethylenedithio)-1,3-dithiole and 4,5-(propylenedithio)-1,3-dithiole units is described. These contain hydroxy, chloro and cyano functionalities (4, 6, 9 and 12). Interestingly, attempted coupling of 4,5-bis(propargylthio)-1,3-dithiole-2-thione 13, to obtain the corresponding TTF, 14 afforded the novel thione, 5-methylthieno[2,3-d]-1,3-dithiole-2-thione 15. Self coupling of thione 15 in the presence of trimethyl phosphite afforded new functionalised dithiophenetetrathiafulvalene 16. The X-ray crysal structures of 4,5-bis(propargyldithio)-1,3-dithiole-2-thione 13 and 5-methylthieno[2,3-d]-1,3-dithiole-2-thione 15 are described. (C) 1997 Elsevier Science Ltd.
Resumo:
Stereoselective approach for the synthesis of both enantiomers of bio-active decanolactone microcarpalide is described from L-tartaric acid. The synthesis of the key intermediates en route to the natural product is achieved from L-tartaric acid involving the elaboration of gamma-hydroxy amide derived from tartaric acid and ring opening of an epoxide derived from tartaric acid. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of n-BuSn(O)OH](n), and 9-hydroxy-9-fluorenecarboxylic acid in the presence of p-X-C6H4-OH (X = F, Br) afforded hydroxyl-rich hexameric organostannoxane prismanes. The crystal structures of these prismanes reveal guest-assisted supramolecular structures. Self-assembly of these compounds on a mica surface affords organooxotin nanotubules.
Resumo:
We study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail (HtT) configurations, at different stacking angles within the Pariser-Parr-Pople model using exact diagonalization method. By varying the stacking angle between the polyenes, we find that the optical gap varies marginally, but transition dipoles show large variations. We find that the dominant first-order hyperpolarizability component beta(XXX) for HtH arrangement and beta(YYY) for HtT arrangement strongly depend on the distance of separation between molecules, while the other smaller component beta(XYY) for HtH arrangement and beta(XXY) for HtT arrangement) does not show this variation with distance. We find that the beta(XXX) for HtH configuration shows a maximum at an angle away from 0, in contrast with the oriented gas model. This angle varies with distance between the polyenes, and at large distance it falls to 0. The ratio of all components of beta of a dimer to monomer is less than two for HtH configuration for all angles. But for HtT configurations the ratio of the dominant beta component is greater than two at large angles. Our ZINDO study on two monomers (4-hydroxy-4'-nitroazobenzene) connected in a nonconjugative fashion shows a linear increase in vertical bar(beta) over right arrow (av)vertical bar without much red shift in optical gap. There is a linear increase in vertical bar(beta) over right arrow (av)vertical bar with increase in number of monomers connected nonconjugatively without resulting in a red shift in optical gap.
Resumo:
Inflammatory processes are involved in the pathogenesis and/or progression of acute central nervous system (CNS) infection, traumatic brain injury and neurodegenerative disorders among others indicating the need for novel strategies to limit neuroinflammation. Eicosanoids including leukotrienes, particularly leukotriene B-4 (LTB4) are principle mediator(s) of inflammatory response, initiating and amplifying the generation of cytokines and chemokines. Cytochrome P450 (Cyp), a family of heme proteins mediate metabolism of xenobiotics and endogenous compounds, such as eicosanoids and leukotrienes. Cytochrome P4504F (Cyp4f) subfamily includes five functional enzymes in mouse. We cloned and expressed the mouse Cyp4f enzymes, assayed their relative expression in brain and examined their ability to hydroxylate the inflammatory cascade prompt LTB4 to its inactive 20-hydroxylated product. We then examined the role of Cyp4fs in regulating inflammatory response in vitro, in microglial cells and in vivo, in mouse brain using lipopolysacharide (LPS), as a model compound to generate inflammatory response. We demonstrate that mouse brain Cyp4fs are expressed ubiquitously in several cell types in the brain, including neurons and microglia, and modulate inflammatory response triggered by LPS, in vivo and in microglial cells, in vitro through metabolism of LTB4 to the inactive 20-hydroxy LTB4. Chemical inhibitor or shRNA to Cyp4fs enhance and inducer of Cyp4fs attenuates inflammatory response. Further, induction of Cyp4f expression lowers LTB4 levels and affords neuroprotection in microglial cells or mice exposed to LPS. Thus, catalytic activity of Cyp4fs is a novel target for modulating neuroinflammation through hydroxylation of LTB4. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Treatment of the lambda(3)-cyclotriphosphazanes, cis-{EtNP(OR)}(3) [R = C6H4Br-4 (L-1) or C6H4Br-2 (L-2)] with [Mo(CO)(4)(NBD)] (NBD = norbornadiene) yields the mononuclear complexes [Mo(CO)(4)L-1] (1) and [Mo(CO)(4)L-2] (2). which have been characterised by IR, NMR (P-31 and H-1) and FAB mass spectral data. The structure of 1 has been confirmed by single crystal X-ray analysis. The structural and conformational changes brought about by complexation are discussed in terms of a bonding model based on "negative hyperconjugation". (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Twelve novel cationic cholesterol derivatives with different linkage types between the cationic headgroup and the cholesteryl backbone have been developed. These have been tested for their efficacies as gene transfer agents as mixtures with dioleoyl phosphatidylethanolamine (DOPE). A pronounced improvement in transfection efficiency was observed when the cationic center was linked to the steroid backbone using an ether type bond. Among these, cholest-5-en-3b-oxyethane-N, N,N-trimethylammonium bromide (2a) and cholest-5-en-3b-oxyethane-N, N-dimethyl-N-2-hydroxyethylammonium bromide (3d) showed transfection efficiencies considerably greater than commercially available reagents such as Lipofectin or Lipofectamine. To achieve transfection, 3d did not require DOPE. Increasing hydration at the headgroup level for both ester- and ether-linked amphiphiles resulted in progressive loss of transfection efficiency. Transfection efficiency was also greatly reduced when a 'disorder'-inducing chain like an oleyl (cis-9-octadecenyl) segment was added to these cholesteryl amphiphiles. Importantly, the transfection ability of 2a with DOPE in the presence of serum was significantly greater than for a commercially available reagent, Lipofectamine. This suggests that these novel cholesterol-based amphiphiles might prove promising in applications involving liposome-mediated gene transfection. This investigation demonstrates the importance of structural features at the molecular level for the design of cholesterol-based gene delivery reagents that would aid the development of newer, more efficient formulations based on this class of molecules.
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = phosphite) have been prepared by protonating the precursor hydride complexes cis-[(dPPM)(2)Ru(H)(L)][BF4] using HBF4.Et2O. The precursor hydride complexes have been obtained from trans-[(dppm)(2)Ru(H)(L)][BF4][(L = phospfiite) via a rare acid-catalysed isomerization reaction in six coordinate species. The trans-[(dppm)(2)Ru(H)(L)][BF4] complexes (L = phosphine) upon protonation gave the isomerized derivatives, however, further addition of acid resulted in a five-coordinate species, [(dppm)(2)RuCl](+) presumably via an intermediate phosphine dihydrogen complex. The electronic as well as the steric properties of the co-ligands seem to strongly influence the structure-reactivity behaviour of this series of complexes.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.