378 resultados para Friction gripper


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A steel ball was slid on aluminium-silicon alloys at different temperatures. After the coefficient of friction had been measured, the surface shear stress was deconvoluted using a two-term model of friction. The ratio of surface shear stress to bulk hardness was calculated as a function of temperature, silicon content and alloying additions. These results are qualitatively similar to those recorded for pre-seizure specimens slid against an En24 disc in a pin-on-disc machine. This similarity, when viewed in the context of the phenomenon of bulk shear, provides a model for seizure of these alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of molecular-dynamics simulations of systems of dumbbell molecules confined by parallel molecular walls. We have carried out systematic studies of three cases: freezing, steady flows, and stick-slip friction. We find that the molecular orientational degrees of freedom cause the surface layers to deviate from a planar configuration. Nevertheless, steady flows, in a channel as narrow as 15 molecular sizes, display continuum behavior. A range of mechanisms in the dynamics of the freezing of a confined fluid is found, as a function of the wall-fluid interactions and the bond length of the dumbbell molecules. The simple order-disorder transition associated with stick-slip motion in the presence of a layer of monoatomic lubricant molecules is supplanted by more complex behavior due to rotational degrees of freedom of the diatomic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow and heat transfer characteristics of a second-order fluid over a vertical wedge with buoyancy forces have been analysed. The coupled nonlinear partial differential equations governing the nonsimilar mixed convection flow have been solved numerically using Keller box method. The effects of the buoyancy parameter, viscoelastic parameter, mass transfer parameter, pressure gradient parameter, Prandtl number and viscous dissipation parameter on the skin friction and heat transfer have been examined in detail. Particular cases of the present results match exactly with those available in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a combination of a logarithmic spiral and a straight line as a failure surface, comprehensive charts have been developed to determine the passive earth pressure coefficients and the positions of the critical failure surface for positive as well as negative wall friction angles. Translational movement of the wall has been examined in detail, considering the soil as either an associated flow dilatant material or a non-dilatant material, to determine the kinematic admissibility of the limit equilibrium solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sliding-wear behavior of Al2O3-SiC-Al composites prepared by melt oxidation against a steel counterface has been recorded in a pin-on-disk machine. At high speeds and pressures (10 m/s, 20 MPa), friction and wear appear to be principally controlled by the in-situ formation of an interfacial film that consists of a layer of Fe3O4. The formation of this him is examined as a function of sliding speed, lubrication, and composite microstructure. A model is proposed in which high surface temperatures cause the preferential extrusion of aluminum from the composite onto the pin/disk interface. This promotes the adhesive pickup of iron and its oxidation to form a stable tribologically beneficial layer of Fe3O4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation of viscosity dependence of the isomerization rate is carried out for continuous potentials by using a fully microscopic, self-consistent mode-coupling theory calculation of both the friction on the reactant and the viscosity of the medium. In this calculation we avoid approximating the short time response by the Enskog limit, which overestimates the friction at high frequencies. The isomerization rate is obtained by using the Grote-Hynes formula. The viscosity dependence of the rate has been investigated for a large number of thermodynamic state points. Since the activated barrier crossing dynamics probes the high-frequency frictional response of the liquid, the barrier crossing rate is found to be sensitive to the nature of the reactant-solvent interaction potential. When the solute-solvent interaction is modeled by a 6-12 Lennard-Jones potential, we find that over a large variation of viscosity (eta), the rate (k) can indeed be fitted very well to a fractional viscosity dependence: (k similar to eta(-alpha)), with the exponent alpha in the range 1 greater than or equal to alpha >0. The calculated values of the exponent appear to be in very good agreement with many experimental results. In particular, the theory, for the first time, explains the experimentally observed high value of alpha even at the barrier frequency, omega(b). similar or equal to 9 X 10(12) s(-1) for the isomerization reaction of 2-(2'-propenyl)anthracene in liquid eta-alkanes. The present study can also explain the reason for the very low value of vb observed in another study for the isomerization reaction of trans-stilbene in liquid n-alkanes. For omega(b) greater than or equal to 2.0 X 10(13) s(-1), we obtain alpha similar or equal to 0, which implies that the barrier crossing rate becomes identical to the transition-state theory predictions. A careful analysis of isomerization reaction dynamics involving large amplitude motion suggests that the barrier crossing dynamics itself may become irrelevant in highly viscous liquids and the rate might again be coupled directly to the viscosity. This crossover is predicted to be strongly temperature dependent and could be studied by changing the solvent viscosity by the application of pressure. (C) 1999 American Institute of Physics. [S0021-9606(9950514-X].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique features of a macromolecule and water as a solvent make the issue of solvation unconventional, with questions about the static versus dynamic nature of hydration and the, physics of orientational and translational diffusion at the boundary. For proteins, the hydration shell that covers the surface is critical to the stability of its structure and function. Dynamically speaking, the residence time of water at the surface is a signature of its mobility and binding. With femtosecond time resolution it is possible to unravel the shortest residence times which are key for the description of the hydration layer, static or dynamic. In this article we review these issues guided by experimental studies, from this laboratory, of polar hydration dynamics at the surfaces of two proteins (Subtilisin Carlsberg (SC) and Monellin). The natural probe tryptophan amino acid was used for the interrogation of the dynamics, and for direct comparison we also studied the behavior in bulk water - a complete hydration in 1 ps. We develop a theoretical description of solvation and relate the theory to the experimental observations. In this - theoretical approach, we consider the dynamical equilibrium in the hydration shell, defining the rate processes for breaking and making the transient hydrogen bonds, and the effective friction in the layer which is defined by the translational and orientational motions of water molecules. The relationship between the residence time of water molecules and the observed slow component in solvation dynamics is a direct one. For the two proteins studied, we observed a "bimodal decay" for the hydration correlation function, with two primary relaxation times: ultrafast, typically 1 ps or less, and longer, typically 15-40 ps, and both are related to the residence time at the protein surface, depending on the binding energies. We end by making extensions to studies of the denatured state of the protein, random coils, and the biomimetic micelles, and conclude with our thoughts on the relevance of the dynamics of native structures to their functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MoSi2 and its composite with TiB2 (10 and 20 wt.%) particulates were synthesized by the hot pressing technique. Dry sliding wear experiments were done on these samples by pin-on-disc method on an EN-24 steel disc. It was observed that the densification and the reinforcement of the matrix are beneficial in reducing the friction and wear Of MoSi2. The tribofilm that was formed during sliding contained both the disc and the pin material. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.