427 resultados para Conditional stability constant
Resumo:
The paper propose a unified error detection technique, based on stability checking, for on-line detection of delay, crosstalk and transient faults in combinational circuits and SEUs in sequential elements. The proposed method, called modified stability checking (MSC), overcomes the limitations of the earlier stability checking methods. The paper also proposed a novel checker circuit to realize this scheme. The checker is self-checking for a wide set of realistic internal faults including transient faults. Extensive circuit simulations have been done to characterize the checker circuit. A prototype checker circuit for a 1mm2 standard cell array has been implemented in a 0.13mum process.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5 unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters, due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic-free operation is obtained. The results are verified experimentally.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.
Resumo:
Long-term stability studies of particle storage rings can not be carried out using conventional numerical integration algorithms. We require symplectic integration algorithms which are both fast and accurate. In this paper, we study a symplectic integration method wherein the sym-plectic map representing the Hamiltonian system is refactorized using polynomial symplectic maps. This method is used to perform long term integration on a particle storage ring.
Resumo:
A cross-linked polymer ``gel'' electrolyte obtained from free radical polymerization of a vinyl monomer (acrylonitrile; AN) in a room temperature ionic liquid electrolyte (N,N-methyl butyl pyrrolidinium-bis (trifluoromethanesulphonyl)imide-lithium bis(trifluoromethanesulphonyl) imide;LiTFSI-[Py(1,4)-TFSI]) for application in high rate capability rechargeable lithium-ion batteries is discussed here. This is a novel alternative compared to the often employed approach of using a molecular liquid as the medium for performing the polymerization reaction. The polymer ``gel'' electrolytes (AN:Py(1,4)-TFSI = 0.16-0.18, w/w) showed remarkable compliable mechanical strength and higher thermal stability compared to LiTFSI-[Py(1,4)-TFSI]. Despite two orders increase in magnitude of viscosity of polymer ``gels'', the room temperature ionic conductivity of the ``gels'' (1.1 x 10(-3)-1.7 x 10(-3) Omega(-1) cm(-1)) were nearly identical to that of the ionic liquid (1.8 x 10(-3) Omega(-1) cm(-1)). The present ``gel'' electrolytes did not exhibit any ageing effects on ionic conductivity similar to the conventional polymer gel electrolytes (e.g. high molecular weight polymer + salt + high dielectric constant molecular solvent). The disorder (ionic liquid) to a relative order (cross-linked polymer electrolyte) transformation does not at all influence the concentration of conducting species. The polymer framework is still able to provide efficient pathways for fast ion transport. Unlike the ionic liquid which is impossible to assemble without a conventional separator in a cell, the polymer ``gel'' electrolyte could be conveniently assembled without a separator in a Li vertical bar lithium iron phosphate (LiFePO(4)) cell. Compared to the ionic liquid, the ``gel'' electrolyte showed exceptional cyclability and rate capability (current density: 35-760 mA g(-1) with LiFePO(4) electronically wired with carbon (amorphous or multiwalled nanotube [MWCNT]).
Resumo:
he thermodynamic properties of mono- and dicalcium stannates have been determined in the temperature range 973–-1423°K from the electromotive force measurements on solid oxide galvanic cells[dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]0[sub 3] - ThO[sub 2]//SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]//CaSnO[sub 3] + SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]/Ca[sub 2]SnO[sub 4] + CaSnO[sub 3] + Sn, W, Pt]and [dformula Pt, Ni + NiO//CaO - ZrO[sub 2]sol;Y[sub 2]O[sub 3] - ThO[sub 2]//Ca[sub 2]SnO[sub 4] + CaO, W, Pt] The Gibbs free energy changes accompanying the formation of the stannates from component oxides may be represented by the equations[dformula 2CaO + SnO[sub 2] --> Ca[sub 2]SnO[sub 4]][dformula Delta G[degree] = - 17,040 + 0.85T ([plus-minus]300) cal][dformula CaO + SnO[sub 2] --> CaSnO[sub 3]][dformula Delta G[degree] = - 17,390 + 2.0T ([plus-minus]300) cal]The partial pressures of the tin bearing oxide species resulting from the decomposition of the stannates have been calculated as a function of the oxygen partial pressure by combining the results of this study with published information on the partial pressures and composition of oxide species over stannic oxide.