415 resultados para Azide Binding Constants
Resumo:
The chloroplastic isoform of glutamine synthetase (GS(2), EC 6.3.1.2) from normal and water stressed safflower (Carthamus tinctorius L. cv.A-300) leaves has been purified to apparent electrophoretic homogeneity by a procedure involving anion-exchange, hydrophobic and size-exclusion chromatography followed by electroelution of the protein from preparative polyacrylamide gels. The observed molecular weight of the native protein varied from 305-330 kDa depending on the sizing column employed. The native protein is composed of 44 kDa subunits. Under conditions of saturating ammonium and at ATP levels of 0.1-10 mM, double-reciprocal plots with respect to glutamate are biphasic and concave downward at high concentrations of the varied substrate for normal enzyme but are linear for enzyme from water-stressed plants. Under subsaturating ATP levels, K-Glu is over 18-fold lower for enzyme from stressed leaves. The K-m, (ATP) varies with Mg2+ levels in the assay mixture. Double-reciprocal plots of initial velocity with respect to ATP at changing fixed levels of NH4+ are linear for normal enzyme but are curved upwards for enzyme from stressed leaves. Initial velocity data of 1/v vs. 1/ammonium for the enzyme from both the sources are non-linear (curved upwards) when ATP is saturating. At subsaturating ATP levels, the data are linear for normal enzyme but are still non-linear for the enzyme from stressed leaves. The results obtained suggest positively cooperative binding of NH4+ A V-max(/2) value of 3.6 mM for Mg2+ was obtained at 5 mM ATP. The isoelectric point of the native protein from normal and stressed leaves was determined to be, respectively, 5.6 and 6.1. The mixed competitive and competitive inhibitors, methionine sulfoximine and ADP and K-i values of 0.086 mM (0.017 for the enzyme from stressed leaves) and 2.15 mM (1.70 for the enzyme from stressed leaves), respectively. Enzyme from stressed leaves is not inhibited by 5 mM proline. The observed kinetic constants of GS(2) from normal and water stressed safflower seedlings are discussed in relation to the known water-stress tolerance of this crop plant.
Resumo:
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Resumo:
Combining site of WBAI is extended and encompasses all the residues of blood group A-reactive trisaccharide [GalNAcalpha3Galbeta4Glc]. Though both of the fucose residues of A-pentasaccharide [GalNAcalpha(Fucalpha2)3Galbeta(Fucalpha3)4Glc] do not directly interact, with the combining site they thermodynamically favour the interaction of GalNAcalpha3Galbeta4Glc part of the molecule by imposing a sterically favourable orientation of the binding epitope viz. GalNAcalpha3Galbeta4Glc of the saccharide. Binding of sugars is driven by enthalpy and is devoid of heat capacity changes. This together with enthalpy-entropy compensation observed for these processes underscore the importance of water reorganization as being one of the principal determinant of protein-sugar interactions.
Resumo:
Direct use of experimental eigenvalues of the vibrational secular equation on to the ab initio predicted eigenvector space is suggested as a means of obtaining a reliable set of intramolecular force constants. This method which we have termed RECOVES (recovery in the eigenvector space) is computationally simple and free from arbitrariness. The RECOVES force constants, by definition, reproduce the experimental vibrational frequencies of the parent molecule exactly. The ab initio calculations were carried out for ethylene as a test molecule and the force constants obtained by the present procedure also correctly predict the vibrational frequencies of the deuterated species. The RECOVES force constants for ethylene are compared with those obtained by using the SQM procedure.
Resumo:
The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.
Resumo:
Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.
Resumo:
beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.
Resumo:
We have calculated the binding energy of a hydrogenic donor in a quantum well with potential shape proportional to \z\(2/3) as a function of the width of the quantum well and the barrier height under an applied uniform magnetic field along the a axis. As the well width decreases, the binding energy increases initially up to a critical well width (which is nearly the same for all magnetic fields) at which there is a turnover. The results are qualitatively similar to those of a hydrogenic donor in a rectangular well. We have also calculated [rho(2)](1/2) and [z(2)](1/2) for the donor electron. [rho(2)](1/2) is found to be strongly dependent on the magnetic field for a given well width and weakly dependent on the well width and the barrier height, for a given value of magnetic field [z(2)](1/2) is weakly dependent on the applied magnetic field. The probability of finding the donor electron inside the well shows a rapid decrease as the well width is reduced at nearly the well width at which the binding energy shows a maximum.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.
Resumo:
Three-dimensional structures of the complexes of concanavalin A (ConA) with alpha(1-2) linked mannobiose, triose and tetraose have been generated with the X-ray crystal structure data on native ConA using the CCEM (contact criteria and energy minimization) method. All the constituting mannose residues of the oligosaccharide can reach the primary binding site of ConA (where methyl-alpha-D-mannopyranose binds). However, in all the energetically favoured complexes, either the non-reducing end or middle mannose residues of the oligosaccharide occupy the primary binding site. The middle mannose residues have marginally higher preference over the non-reducing end residue. The sugar binding site of ConA is extended and accommodates at least three alpha(1-2) linked mannose residues. Based on the present calculations two mechanisms have been proposed for the binding of alpha(1-2) linked mannotriose and tetraose to ConA.
Resumo:
Synthesis of several shape-specific hosts through heteroaromatic annulation on cis,syn,cis-triquinanedione 1 and X-ray crystal structure determination of one of them, 4a, is reported. Preliminary results of complexation between cleft 5a and diamines are reported.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.