314 resultados para Angular-momentum Transfer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, beta(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I-2 omega,I-X,I-X/I-2 omega,I-Z,I-X and D' = I-2 omega,I-X,I-C/I-2 omega,I-Z,I-C in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, beta(HRS), and the value of macroscopic depolarization ratios, D and D', are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical beta(HRS), D and D' values as a function of the geometry of the complex. The calculated beta(HRS), D, and D' values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30 degrees is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. (C) 2011 American Institute of Physics. doi:10.1063/1.3514922]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, beta(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. (C) 2011 American Institute of Physics. doi:10.1063/1.3526748]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he porphyrin ring in the title compound, 10,19-dinitro-2,7,12,17-tetraphenyl-21,22,23,24-tetraazapenta-cyclo[16.2.1.1(3,6).1(8,11).1(13,16)]tetracosa-1,3,5,7,9,11(23),-12,14,16,18(21),19-undecaene 0.5-dichloromethane solvate, C44H28N6O4.0.5CH2Cl2, adopts a saddle conformation with neighbouring pyrrole rings tilted with respect to each other. The two nitro groups are situated on alternate pyrrole rings and have their planes angled away from those of the pyrrole rings, thereby indicating that interaction between the porphyrin and nitro groups is slight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome c, a "mobile electron carrier" of the mitochondrial respiratory chain, also occurs in detectable amounts in the cytosol, and can receive electrons from cytochromes present in endoplasmic reticulum and plasma membranes as well as from superoxide and ascorbate. The pigment was found to dissociate from mitochondrial membranes in liver and kidney when rats were subjected to heat exposure and starvation, respectively. Treating cytochrome c with hydroxylamine gives a partially deaminated product with altered redox properties; decreased stimulation of respiration by deficient mitochondria, increased reduction by superoxide, and complete loss of reducibility by plasma membranes. Mitochondria isolated from brown adipose tissue of cold-exposed rats are found to be sub-saturated with cytochrome c. The ability of cytochrome c to reactivate reduced ribonuclease is now reinterpreted as a molecular chaperone role for the hemoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient method for the synthesis of a series of symmetrical aryl disulfides from arylamines via the reaction of their stable diazonium salts with tetrathiomolybdate under anhydrous conditions is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of 2-amino-6-methylpyridine, 2-picoline and 4-picoline as donors with iodine, 7,7',8,8'-tetracyanoquinodimethane,2,3-dichloro-5,6-dicyano-1,4-benzoquinone, p-chloranil, o-chloranil, 2,4,7-trinitro-9-fluorenone and 2,4,5,7-tetranitro-9-fluorenone as acceptors has been studied by measuring visible and ultraviolet spectra. Infrared, electron paramagnetic and nuclear magnetic resonance spectra have also been obtained. Kinetic parameters have been derived. The results indicate that the charge transfer interaction occurs through the formation of free radicals which is followed by a slow reaction to give a diamagnetic product. However, with iodine, the charge transfer complex formation occurs without the formation of free radicals. The donor site is inferred to be the lone pair of electrons of the amino nitrogen of 2-amino-6-methylpridine whereas for 2- and 4-picolines, the preferred site is lone pair of electrons on the pyridine nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory is developed for diffusion-limited charge transfer on a non-fractally rough electrode. The perturbation expressions are obtained for concentration, current density and measured diffusion-limited current for arbitrary one- and two-dimensional surface profiles. The random surface model is employed for a rough electrode\electrolyte interface. In this model the gross geometrical property of an electrochemically active rough surface - the surface structure factor-is related to the average electrode current, current density and concentration. Under short and long time regimes, various morphological features of the rough electrodes, i.e. excess area (related to roughness slope), curvature, correlation length, etc. are related to the (average) current transients. A two-point Pade approximant is used to develop an all time average current expression in terms of partial morphological features of the rough surface. The inverse problem of predicting the surface structure factor from the observed transients is also described. Finally, the effect of surface roughness is studied for specific surface statistics, namely a Gaussian correlation function. It is shown how the surface roughness enhances the overall diffusion-limited charge transfer current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzyltriethylammonium tetrathiomolybdate 1 reacts readily with benzyl halides, alkyl iodides and acyl halides in the solid state to give the corresponding disulfides in good yields and with remarkable selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoinduced electron transfer (ET) reactions in the zinc porphyrin-crown ether (ZnPCE) supramolecule, in which one crown ether moiety containing Eu3+ as electron acceptor is covalently linked to zinc porphyrin (ZnP), were studied by flash photolysis. In methanol solutions, highly efficient charge separation occurs via intramolecular ET from (ZnP)-Zn-3 to Eu3+ encapsulated in the crown ether void (k(1) = (3 +/- 1) X 10(3) s(-1)) and intramolecular ET from 3ZnP to uncomplexed Eu2+ (k(2) = (2.5 +/- 0.5) X 10(3) s(-1)). Intermolecular ET from Eu2+ escaped from the crown ether void to ZnP.+ (k(tau) = (4.3 +/- 0.7) X 10(8) M(-1) s(-1)) seems to be the main pathway of charge recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.