280 resultados para 6-53A
Resumo:
In the present study, we report the synthesis, characterization of new series of thiazolo3,2-a]pyrimidine-6-carboxylate derivatives 3a-f and 4a-f. The newly synthesized compounds were screened for in vitro antimicrobial and antiviral activities. The probable mode of action of these active compounds was determined through in silico docking study by docking the receptor methionyl-tRNA synthetase and human inosine-5'-monophosphate dehydrogenase (IMPDH) for antibacterial and antiviral activities, respectively. Among the compounds, 4c exhibited excellent in vitro antimicrobial activity against all tested strains with binding and docking energies -35.6 and -12.4 kcal/mol, respectively. The antiviral studies were carried out for the selected compounds in which 4a exhibited 73.69 and 54.42 % of inhibition of buffalopox and camelpox viruses, respectively. Furthermore, compound 4a showed minimum docking and binding energy along with the maximum hydrogen/hydrophobic interaction with IMPDH. The study contributes towards identification and screening of potential antimicrobial and antiviral agent's against the pathogens.
Resumo:
Two Pd-6 molecular aggregates (1 and 2), self-sorted via a template-free three-component self-assembly process, represent new examples of discrete architectures exhibiting very high proton conductivity 0.78 x 10(-3) S cm(-1) (1) and 0.22 X 10(-3) S cm(-1) (2)] at 300 K at low relative humidity (B46%) with low activation energy comparable to that of currently used Nafion in fuel cells.
Resumo:
A simple and efficient protocol for the synthesis of novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) is described. Initially, p-anisaldehyde 1 was condensed (Mannich reaction) with acetone and ammonium acetate trihydrate afforded 2,6-bis(4-methoxyphenyl)piperidin-4-one 2. Then, methylation followed by oximation with hydroxylamine hydrochloride (NH(2)OHa (TM) HCl) furnished a key scaffold 4. Further, to explore the enhanced biological properties of the piperidin-4-one core i.e. the key scaffold 4 was conjugated with substituted benzoyl chlorides in the presence of anhydrous K2CO3 as base to obtain novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) in excellent yields. The newly synthesized compounds were characterized by elemental analysis, IR, H-1 NMR, C-13 NMR and mass spectroscopic techniques, and screened for their in vitro antioxidant and antimicrobial activities. Most of the compounds exerted positive efficacy towards the biological assays performed. Among the synthesized analogues, compounds 4l and 4m exhibited promising antioxidant activity and on the other hand compounds 4b and 4d manifested persuasive antibacterial activity, whereas compound 4b displayed stupendous antifungal activity against A. flavus strain.
Resumo:
FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In the current communication, we report the synthesis, spectroscopic, crystal structure, DFT and photophysical studies of a new nicotinonitrile derivative, viz. 2-methoxy-6-(4-methoxy-phenyl)-4-p-tolyl-nicotinonitrile (2) as a potential blue light emitting material. The compound 2 was synthesized in good yield via a simple route. The acquired spectral and elemental analysis data were in consistent with the chemical structure of 2. The single crystal study further confirms its three dimensional structure, molecular shape, and nature of short contacts. Its DFT calculations reveal that compound 2 possesses a non-planar structure and its theoretical IR spectral data are found to be in accordance with experimental values. In addition, its UV visible and fluorescence spectral measurements prove that the compound exhibits good absorption and fluorescence properties. Also, it shows positive solvatochromic effect when the solvent polarity was varied from non-polar to polar. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb) exhibits a rare combination of interesting dielectric properties, in the form of relatively large dielectric constants (epsilon' > 30), low losses, and extremely small temperature and frequency dependencies, over large ranges of temperature and frequency Choudhury et al., Appl. Phys. Lett. 96, 162903 (2010) and Choudhury et al., Phys. Rev. B 82, 134203 (2010)], making these compounds promising as high-k dielectric materials. The authors present a brief review of the existing literature on this interesting class of oxides, complimenting it with spectroscopic data in conjunction with first-principles calculation results, revealing a novel mechanism underlying these robust dielectric properties. These show that the large size differences in Cu2+ and Ti4+ at the B-site, aided by an inherent random distribution of CuO5 and TiO5 polyhedral units, frustrates the ferroelectric instability, inherent to the noncentrosymmetric P6(3) cm space group of this system, and gives rise to the observed relatively large dielectric constant values. Additionally, the phononic contributions to the dielectric constant are dominated primarily by mid-frequency (>100 cm(-1)) polar modes, involving mainly Ti4+ 3d(0) ions. In contrast, the soft polar phonon modes with frequencies typically less than 100 cm(-1), usually responsible for dielectric properties of materials, are found to be associated with non-d(0) Cu2+ ions and to contribute very little, giving rise to the remarkable temperature stability of dielectric properties of these compounds. (C) 2014 American Vacuum Society.
Resumo:
A new series of luminescent 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles containing three ring systems, viz. methoxy pyridine, benzonitrile and alkoxy benzene with variable alkoxy chain length, with bent-core structures were synthesized as potential mesogens and characterized by spectral techniques. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (PXRD) measurements. The study reveals that compounds with shorter chain lengths i.e. m = 4] exclusively exhibit the nematic phase while compounds with longer chain lengths i.e. m = 6-14 (only even)] show predominantly the orthorhombic columnar phase. Single crystal X-ray analysis of 4-(2-(4-butyloxy/octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitriles reveals that they possess slightly non-planar unsymmetrical bent structures and their molecular packing consists of nonconventional H-bond interactions; it also explains the observed liquid crystalline phase. An optical study indicates that the title compounds are good blue emitting materials showing absorption and emission bands in the range 335-345 nm and 415-460 nm, respectively. An electrochemical study of 4-(2-(4-octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitrile shows a band gap of 1.89 eV with HOMO and LUMO energy levels of -5.06 and -3.17 eV, respectively. Also, density functional theory (DFT) calculations confirm its optimized geometry, electronic absorption and frontier molecular orbital distributions.
Resumo:
The organometallic complex of (eta(6)-cymene)Ru(II)Br with 6-thioguanine (6-TG) shows better photostability than the biologically active 6-thioguanine which is used as an immunosuppressant and as an anticancer agent.
Resumo:
Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The first synthesis of 1,3-thiazine fused peptide mimics is described from N-(3-hydroxypropyl)thioamides under MsCl/NEt3 conditions. The method is amenable to oligopeptidomimics with polar and apolar side chains. Substantial epimerization occurs at chiral C(2) exo methines in non-Pro fused mimics even under neutral conditions. H-1 NMR and crystal structure analyses indicate that the Thi analogues primarily associate with each other through intermolecular hydrogen bonds, involving the nitrogen of 1,3-thiazine and the N-H of the fused residue, which may be the basis for enamination-racemization process in these peptide mimics. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo2,1-b]1,3,4]wthiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo2,1-1)]1,3,4]th iadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-ypimidazo2,1-1)]1,3,4]thi adiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.
Resumo:
Three new molecular compounds, Ni-5(bta)(6)(CO)(4)], I, Ni-9(bta)(12)(CO)(6)], II, Ni-9(bta)(12)(CO)(6)]. 2(C3H7NO), III, (bta = benzotriazole) were prepared employing solvothermal reactions. Of these, I have pentanuclear nickel, whereas II and III have nonanuclear nickel species. The structures are formed by the connectivity between the nickel and benzotriazole giving rise to the 5- and 9-membered nickel clusters. The structures are stabilised by extensive pi aEuro broken vertical bar pi and C-H... pi interactions. Compound II and III are solvotamorphs as they have the same 9-membered nickel clusters and have different solvent molecules. To the best of our knowledge, the compounds I-III represent the first examples of the same transition element existing in two distinct coordination environment in this class of compounds. The studies reveal that compound I is reactive and could be an intermediate in the preparation of II and III. Thermal studies indicate that the compounds are stable upto 350(a similar to)C and at higher temperatures (similar to 800(a similar to)C) the compounds decompose into NiO. Magnetic studies reveal that II is anti-ferromagnetic.
Resumo:
A template-free triply interlocked Pd-6 cage (2) was synthesized by two-component self-assembly of cis-blocked 90 degrees acceptor cis-(tmen)Pd(NO3)(2) (M) and 1,3,5-tris((E)-2-(pyridin-3-yl)vinyl)benzene (L). Assembly 2 was characterized by H-1 NMR and ESI-MS, and the structure was confirmed by X-ray crystallography, which revealed a parallel conformation of the olefin double bonds belonging to the adjacent cages in the solid state at a distance of 3.656 angstrom, thereby indicating the feasibility of 2+2] photochemical reaction. Two adjacent interlocked cages were covalently married together by intermolecular 2+2] cycloaddition in a single crystal-to-single crystal fashion upon exposure to sunlight/UV irradiation. Most surprisingly, the covalently married pair was easily separated thermally in aqueous medium under mild reaction conditions.