453 resultados para 09290410 MOCNESS-5
Resumo:
This paper describes the electrical contact resistance (ECR) measurements made on thin gold plated (gold plating of <= 0.5 mu m with a Ni underlayer of similar to 2 mu m) oxygen free high conductivity (OFHC) Cu contacts in vacuum environment. ECR in gold plated OFHC Cu contacts is found to be slightly higher than that in bare OFHC Cu contacts. Even though gold is a softer material than copper, the relatively high ECR values observed in gold plated contacts are mainly due to the higher hardness and electrical resistivity of the underlying Ni layer. It is well known that ECR is directly related to plating factor, which increases with increasing coating thickness when the electrical resistivity of coating material is more than that of substrate. Surprisingly, in the present case it is found that the ECR decreases with increasing gold layer thickness on OFHC Cu substrate (gold has higher electrical resistivity than OFHC Cu). It is analytically demonstrated from the topography and microhardness measurements results that this peculiar behavior is associated with thin gold platings, where the changes in surface roughness and microhardness with increasing layer thickness overshadow the effect of plating factor on ECR.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylates have been analyzed to determine the role of different functional groups on the molecular geometry, conformational characteristics and the packing of these molecules in the crystal lattice. Out of these the para fluoro substituted compound on the aryl ring exhibits conformational polymorphism, due to the different conformation of the ester moiety. This behaviour has been characterized using both powder and single-crystal X-ray diffraction, optical microscopy and differential scanning calorimetry performed on both these polymorphs. The compounds pack via the cooperative interplay of strong N-H center dot center dot center dot O=C intermolecular dimers and chains forming a sheet like structure. In addition, weak C-H center dot center dot center dot O=C and C-H center dot center dot center dot pi interactions impart additional stability to the crystal packing.
Resumo:
Potassamide induced in situ alkylation of 1-alkyl- 4-cyano-3-methoxy-5,6-dihydroisoquinolines (2a & 2b) with alkyl iodides (CH3I, CH3CH2I & cyclohexyl iodide) gave the 5-alkyl- and 5,9-dialkyl-5,6-dihydroisoquinolines (4–ad & 3a–e), isoquinoline derivatives, (5a–b) and diastereomeric mixture of 4- alkyl-1,2,3,4-tetrahydroisoquinolin-3(2H)-ones (6a–e & 6′a–e). Structures were assigned on the basis of spectral data [Mass, 1H & 13C NMR, 2D NOESY & HC-COLOC]. Amide induced in situ alkylation of compounds 3a and 4a with CH3I gave in almost quantitative yield the dimethylated compounds 3d and 3a respectively. While KNH2/liq.NH3 methylation of 1,2- dihydroisoquinoline, 1 with CH3I gave the mixture of compounds, 6a & 6′a and the isoquinoline derivative 5a, NaH/benzene reaction of 1 with CH3I gave exclusively 5a. N-methylation of the mixture of compounds 6a & 6′a with NaH/CH3I gave the methylated derivatives, 7 & 8. A suitable mechanism has been proposed for the formation of products.
Resumo:
An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.
Resumo:
Intramolecular alkylation reaction of the bromoenone 12, obtained from S-carvone in three steps, furnished the bicyclo[2.2.2]octenone 13. Contrary to the anticipated radical annulation reaction, the bicyclic bromides 14 and 15, obtained from the enone 13, generated exclusively the cyclopropane product 18 via a 3-exo-trig radical cyclization on reaction with nBu3SnH and AIBN, even in the presence of a large excess of a radicophile. On the other hand, bromoenone 24, synthesized from R-carvone via S-naphthylcarvone 21, underwent radical annulation reaction in the presence of radicophiles to furnish the isotwistanes 25-28 in a regio- and stereospecific manner. Hydrogenation of the olefin 34, obtained from the diketone 27 via a regiospecific Wittig reaction, furnished the naphthyl-5-epipupukean-9-one 33, whereas stereoselective hydrogenation of the enone 36, prepared from the keto ester 25 via a Grignard reaction and dehydration sequence, generated the naphthylpupukeanone 32.
Resumo:
he solvation of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II)[Zn(obtpp)], in twelve different solvents results in large red shifts of the B and Q bands of the porphyrin accompanied by enhanced absorbance ratios of the Q bands. These observations are ascribed to the destabilisation of the highest occupied molecular orbital a2u of the porphyrin arising from a flow of charge from the axial ligand to the porphyrin ring through the zinc(II) ion. The binding constants of adducts of [Zn(obtpp)] with neutral bases have been found to be an order of magnitude greater than those observed for the corresponding adducts of (5,10,15,20-tetraphenylporphyrinato)-zinc and vary in the order piperidine > imidazole > pyridine > 3-methylpyridine > pyridine-3-carbaldehyde. The enhanced binding constants and large spectral shifts are interpreted in terms of the electrophilicity of [Zn(obtpp)] induced by the electron-withdrawing bromine substituents in the porphyrin core. The structure of [Zn(obtpp)(PrCN)2] has been determined; it reveals six-co-ordinated zinc(II) with two long Zn–N distance [2.51(4), 2.59(3)Å]. The porphyrin is non-planar and displays a saddle-shaped conformation.
Resumo:
The preponderance of 3'-5' phosphodiester links in nucleic acids is well known. Albeit less prevalent, the 2'-5' links are specifically utilised in the formation of 'lariat' in group II introns and in the msDNA-RNA junction in myxobacterium. As a sequel to our earlier study on cytidylyl-2',5'-adenosine we have now obtained the crystal structure of adenylyl-2',5'-adenosine (A2'p5'A) at atomic resolution. This dinucleoside monophosphate crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 7.956(3) A, b = 12.212(3) A and c = 36.654(3) A. CuK alpha intensity data were collected on a diffractometer. The structure was sloved by direct methods and refined by full matrix least squares methods to R = 10.8%. The 2' terminal adenine is in the commonly observed anti (chi 2 = 161 degrees) conformation and the 5' terminal base has a syn (chi 1 = 55 degrees) conformation more often seen in purine nucleotides. A noteworthy feature of A2'p5'A is the intranucleotide hydrogen bond between N3 and O5' atoms of the 5' adenine base. The two furanose rings in A2'p5'A show different conformations - C2' endo, C3' endo puckering for the 5' and 2' ends respectively. In this structure too there is a stacking of the purine base on the ribose O4' just as in other 2'-5' dinucleoside structures, a feature characteristically seen in the left handed Z DNA. In having syn, anti conformation about the glycosyl bonds, C2' endo, C3' endo mixed sugar puckering and N3-O5' intramolecular hydrogen bond A2'p5'A resembles its 3'-5' analogue and several other 2'-5' dinucleoside monophosphate structures solved so far. Striking similarities between the 2'-5' dinucleoside monophosphate structures suggest that the conformation of the 5'-end nucleoside dictates the conformation of the 2' end nucleoside. Also, the 2'-5' dimers do not favour formation of miniature classical double helical structures like the 3'-5' dimers. It is conceivable, 2-5(A) could be using the stereochemical features of A2'p5'A which accounts for its higher activity.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
5,6-Dihydro-4H-1,3-oxazine hydrobromides have been synthesized by the nucleophilic autocyclo-O-alkylation of N-(3-bromopropyl)amides under neutral conditions in chloroform. It is found that electron-donating amide alpha-substituents influence the autocyclization efficiency.
Resumo:
A simple and versatile method for the synthesis of 1,5-benzodiazepines from o-phenylenediamine and ketones in the presence of solvents and under solvent-free conditions that used an amorphous mesoporous iron aluminophosphate as catalyst was developed. High yields with excellent selectivity were obtained with a wide variety of ketones under mild reaction conditions. The catalyst had the advantages of ease of preparation, ease of handling, simple recovery, reusability, non toxicity, and being inexpensive.
Resumo:
he porphyrin ring in the title compound, 10,19-dinitro-2,7,12,17-tetraphenyl-21,22,23,24-tetraazapenta-cyclo[16.2.1.1(3,6).1(8,11).1(13,16)]tetracosa-1,3,5,7,9,11(23),-12,14,16,18(21),19-undecaene 0.5-dichloromethane solvate, C44H28N6O4.0.5CH2Cl2, adopts a saddle conformation with neighbouring pyrrole rings tilted with respect to each other. The two nitro groups are situated on alternate pyrrole rings and have their planes angled away from those of the pyrrole rings, thereby indicating that interaction between the porphyrin and nitro groups is slight.
Resumo:
5-fluorouracil (FUra) has been shown to modulate the aminoacylation function of rat liver tRNA. The present study was aimed at studying the structure-function relationship of FUra-substituted tRNA. Male Wistar rats (2-3 month old) were given a single i.p. injection of FUra at 50, 250, or 500 mg/kg body wt. and FUra-substituted total liver tRNA, i.e. tRNA(FUra50, 250, and 500, respectively, were isolated 3 h later. Normal tRNA (tRNA(N)) was isolated from saline-treated control rats. Thermal denaturation studies showed higher melting temperatures for tRNA(FUra) compared to tRNA(N). Heat denaturation followed by renaturation of total tRNA did not affect the activity of tRNA(N) and tRNA(FUra50), where as tRNA(FUra250 and 500) lost 35% and 72% of activity, respectively, compared to the corresponding group of non-denatured tRNA. Antibodies specific to rat liver tRNA recognized normal and FUra-substituted tRNA in the order of tRNA(N) > tRNA(FUra50) > or = tRNA(FUra250) > tRNA(FUra500) in an avidin-biotin micro-enzyme linked immunosorbant assay. tRNA(N) or tRNA(FUra50) preincubated with tRNA antiserum showed 74% and 59% of aminoacylation activity, respectively, compared to that of corresponding tRNA preincubated with normal rabbit IgG. However, activities of similarly treated tRNA(FUra250 and 500) were not affected. The observations of possible changes in the secondary structure of rat liver tRNA upon incorporation of FUra are discussed.
Resumo:
he ultrastructure of purified rinderpest virus and intracellular viral nucleocapsids from infected vero cells treated with a subtoxic dose of 5-fluorouracil (5-Fu) (1 mug/ml), has been analysed by transmission electron microscopy, and compared with that of normal virus particle and nucleocapsids. The results reveal dramatic alterations in the structure of both virions and nucleocapsids. The surface glycoprotein projection of virions was not seen or present at a much reduced level. The intracellular nucleocapsids showed pronounced structural changes,with respect to size, shape and fine structure. The length of treated nucleocapsids is much smaller as compared to the control. The central hollow core is missing in case of drug-treated nucleocapsid and the herring bone structure is replaced by a 'beads on string' structure. The presence of N protein, which is a major structural component of nucleocapsids was seen in 5-Fu-treated cells, but it was associated with a predominantly diffused form of nucleocapsids as seen by immunoelectron microscopy. We report here the first definitive and visual evidence of altered structure of virions and their nucleocapsids after 5-Fu treatment
Resumo:
In the presence of a catalytic amount of water, 1,5-dienes undergo novel and unusual oxidation with potassium permanganate�copper sulfate in dichloromethane to give substituted butanolides in good yields under very mild conditions.