307 resultados para shuffle-exchange network
Resumo:
In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.
Resumo:
In this paper we demonstrate the use of multi-port network modeling to analyze one such antenna with fractal shaped parts. Based on simulation and experimental studies, it has been demonstrated that model can accurately predict the input characteristics of antennas with Minkowski geometry replacing a side micro strip square ring.
Resumo:
Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.
Resumo:
with the development of large scale wireless networks, there has been short comings and limitations in traditional network topology management systems. In this paper, an adaptive algorithm is proposed to maintain topology of hybrid wireless superstore network by considering the transactions and individual network load. The adaptations include to choose the best network connection for the response, and to perform network Connection switching when network situation changes. At the same time, in terms of the design for topology management systems, aiming at intelligence, real-time, the study makes a step-by-step argument and research on the overall topology management scheme. Architecture for the adaptive topology management of hybrid wireless networking resources is available to user’s mobile device. Simulation results describes that the new scheme has outperformed the original topology management and it is simpler than the original rate borrowing scheme.
Resumo:
We study the performance of cognitive (secondary) users in a cognitive radio network which uses a channel whenever the primary users are not using the channel. The usage of the channel by the primary users is modelled by an ON-OFF renewal process. The cognitive users may be transmitting data using TCP connections and voice traffic. The voice traffic is given priority over the data traffic. We theoretically compute the mean delay of TCP and voice packets and also the mean throughput of the different TCP connections. We compare the theoretical results with simulations.
Resumo:
Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
Organic-inorganic hybrid membranes are prepared from Nafion and acid functionalized aluminosilicate with varying structures and surface areas. Acid-functionalized mesostructured aluminosilicate with cellular foam framework (Al-MSU-F type) of surface area 463 m(2) g(-1), acid-functionalized aluminosilicate molecular sieves (Al-HMS type) of surface area 651 m(2) g(-1) and acid-functionalized mesostructured aluminosilicate with hexagonal network (Al-MCM-41 type) of surface area 799 m(2) g(-1) have been employed as potential filler materials to form hybrid membranes with Nafion. The structural behavior, water uptake, ion-exchange capacity, proton conductivity and methanol permeability of the hybrid membranes are extensively investigated. Direct methanol fuel cells (DMFCs) with Al-HMS-Nafion and Al-MCM-41-Nafion hybrid membranes deliver respective peak power-densities of 170 mW cm(-2) and 246 mW cm(-2), while a peak power-density of only 48 mW cm(-2) is obtained for the DMFC employing pristine recast-Nafion membrane under identical operating conditions. The unique properties associated with hybrid membranes could be exclusively attributed to the presence of pendant sulfonic-acid groups in the filler materials, which provide proton-conducting pathways between the filler and matrix in the hybrid membranes, and facilitate proton transport with adequate balance between proton conductivity and methanol permeability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The performance analysis of adaptive physical layer network-coded two-way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. The deep channel fade conditions which occur at the relay referred as the singular fade states fall in the following two classes: (i) removable and (ii) non-removable singular fade states. With every singular fade state, we associate an error probability that the relay transmits a wrong network-coded symbol during the BC phase. It is shown that adaptive network coding provides a coding gain over fixed network coding, by making the error probabilities associated with the removable singular fade states contributing to the average Symbol Error Rate (SER) fall as SNR-2 instead of SNR-1. A high SNR upper-bound on the average end-to-end SER for the adaptive network coding scheme is derived, for a Rician fading scenario, which is found to be tight through simulations. Specifically, it is shown that for the adaptive network coding scheme, the probability that the relay node transmits a wrong network-coded symbol is upper-bounded by twice the average SER of a point-to-point fading channel, at high SNR. Also, it is shown that in a Rician fading scenario, it suffices to remove the effect of only those singular fade states which contribute dominantly to the average SER.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
We investigated the structural and magnetic properties of SmCo5/Co exchange coupled nanocomposite thin films grown by magnetron sputtering from Sm and Co multitargets successively. The growth of the films was carried out at elevated substrate temperature followed by in situ annealing. On Si (100) substrate, X-ray diffraction confirms the formation of textured (110) SmCo5 hard phase, whereas on MgO (110) substrate, the diffraction pattern shows the epitaxial growth of SmCo5 phase with crystalline orientation along 100] direction. Secondary Ion Mass Spectroscopy reveals the structural transformation from multilayered (Sm/Co) to SmCo5/Co nano-composite films due to high reactivity of Sm at elevated temperature. Transmission electron microscopy indicates the existence of nanocrystalline phase of SmCo5 along with unreacted Co. Observed single phase behavior in magnetic hysteresis measurements indicates well exchange coupling between the soft and the hard phases in these nano-composite films. For samples with samarium layer thickness, t(sm)=3.2 nm and cobalt layer thickness, t(Co)= 11.4 nm, the values of (BH)(max) were obtained as 20.1 MGOe and 12.38 MGOe with H-c value similar to 3.0 kOe grown on MgO and Si substrates, respectively.
Resumo:
The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe12O19 as the hard phase and CoFe2O4/MgFe2O4 as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20-700 degrees C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T).
Resumo:
Exchange biased Fe(FM)-FeMn(AFM) bilayers were grown by pulsed laser ablation in UHV and probed by SQUID magnetometer and planar Hall effect measurements. A suppression of barkhausen avalanches was observed during the switching of the bilayer when compared to that of pure Fe, which is indicative of a change in the reversal mechanism.