257 resultados para motion measurement
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
Measurement of device current during switching characterisation of an insulated gate bipolar transistor (IGBT) requires a current sensor with low insertion impedance and high bandwidth. This study presents an experimental procedure for evaluating the performance of a coaxial current transformer (CCT), designed for the above purpose. A prototype CCT, which can be mounted directly on a power terminal of a 1200 V/50 A half-bridge IGBT module, is characterised experimentally. The measured characteristics include insertion impedance, gain and phase of the CCT at different frequencies. The bounds of linearity within which the CCT can operate without saturation are determined theoretically, and are also verified experimentally. The experimental study on linearity of the CCT requires a high-amplitude current source. A proportional-resonant (PR) controller-based current-controlled half-bridge inverter is developed for this purpose. A systematic procedure for selection of PR controller parameters is also reported in this study. This set-up is helpful to determine the limit of linearity and also to measure the frequency response of the CCT at realistic amplitudes of current in the low-frequency range.
Resumo:
A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.
Resumo:
Most often the measurement of VHF from the conventional 1D H-1 NMR spectrum is severely hindered consequent to similar magnitudes of JHF and JHH couplings and the spectral multiplicity pattern. The present study reports a new 1D NMR technique based on real time spin edition, which removes all JHF and JHH while retaining only VHF of a chosen fluorine. The obtained spectrum is significantly simplified and permits straightforward determination of all possible VHF values of a chosen fluorine. Due to one dimensional nature, the method is much faster compared to 2D GET-SERF by 1-2 orders of magnitude. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
Using coherent light interrogating a turbid object perturbed by a focused ultrasound (US) beam, we demonstrate localized measurement of dynamics in the focal region, termed the region-of-interest (ROI), from the decay of the modulation in intensity autocorrelation of light. When the ROI contains a pipe flow, the decay is shown to be sensitive to the average flow velocity from which the mean-squared displacement (MSD) of the scattering centers in the flow can be estimated. While the MSD estimated is seen to be an order of magnitude higher than that obtainable through the usual diffusing wave spectroscopy (DWS) without the US, it is seen to be more accurate as verified by the volume flow estimated from it. It is further observed that, whereas the MSD from the localized measurement grows with time as tau(alpha) with alpha approximate to 1.65, without using the US, a is seen to be much less. Moreover, with the local measurement, this super-diffusive nature of the pipe flow is seen to persist longer, i.e., over a wider range of initial tau, than with the unassisted DWS. The reason for the super-diffusivity of flow, i.e., alpha < 2, in the ROI is the presence of a fluctuating (thermodynamically nonequilibrium) component in the dynamics induced by the US forcing. Beyond this initial range, both methods measure MSDs that rise linearly with time, indicating that ballistic and near-ballistic photons hardly capture anything beyond the background Brownian motion. (C) 2015 Optical Society of America
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
Background: DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Methods: Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Results: Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Conclusion: Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.
Resumo:
A steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and in the present study is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The evaluated strain in the VBSG corresponds to the existing stain in the concrete surrounding the prestressing strands. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.
Resumo:
In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.
Resumo:
Low resistance motion of liquids on a well-defined path is beneficial for several MEMS based applications including energy harvesting and switching. By eliminating the contact line we demonstrate low resistance motion of a liquid bulge on pre-wetted strips. The bulge appears on wetted strips due to a morphological instability. The wetted strip confines the mercury bulge and defines its path of motion. Resistance to initiate motion of the bulge was studied experimentally and compared to other cases. An electret based energy harvesting device using bulge motion has been fabricated and tested.
Resumo:
This paper proposes a design methodology to stabilize collective circular motion of a group of N-identical agents moving at unit speed around individual circles of different radii and different centers. The collective circular motion studied in this paper is characterized by the clockwise rotation of all agents around a common circle of desired radius as well as center, which is fixed. Our interest is to achieve those collective circular motions in which the phases of the agents are arranged either in synchronized, in balanced or in splay formation. In synchronized formation, the agents and their centroid move in a common direction while in balanced formation, the movement of the agents ensures a fixed location of the centroid. The splay state is a special case of balanced formation, in which the phases are separated by multiples of 2 pi/N. We derive the feedback controls and prove the asymptotic stability of the desired collective circular motion by using Lyapunov theory and the LaSalle's Invariance principle.
Resumo:
Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problein in damage assessment. A recently developed C-0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a `micro-scale rectilinear translatory motion' of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the `velocity of the ETP' and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.