274 resultados para ion trap
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.
Resumo:
The structure of the borate complex responsible for the enantiodifferentiation of amines using a previously reported three-component protocol has been established. The choice between an ion pair and an amine-coordinated complex with the N atom of the amine coordinated to the B atom is favored for the former structure based on the DFT-calculated B-11 NMR chemical shifts. In contrast to expectations, the anisotropies of the quadrupolar B-11 nucleus for the two structures were calculated to be indistinguishable with regard to their effect on the linewidth of the NMR signal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Eight alkali metal ion-mediated dioxidovanadium(V), {(VO2L1-6)-O-V} A(H2O)n]proportional to, complexes for A = Li+, Na+, K+ and Cs+, containing tridentate aroylhydrazonate ligands coordinating via ONO donor atoms, are described. All the synthesised ligands and the metal complexes were successfully characterised by elemental analysis, IR, UV-Vis and NMR spectroscopy. X-ray crystallographic investigation of 3, 5-7 shows the presence of distorted NO4 coordination geometries for LVO2- in each case, and varying mu-oxido and/ or mu-aqua bridging with interesting variations correlated with the size of the alkali metal ions: with small Li+, no bridging-O is found but four ion aggregates are found with Na+, chains for K+ and finally, layers for Cs+. Two (5) or three-dimensional (3, 6 and 7) architectures are consolidated by hydrogen bonding. The dioxidovanadium(V) complexes were found to exhibit DNA binding activity due to their interaction with CT-DNA by the groove binding mode, with binding constants ranging from 10(3) to 10(4) M-1. Complexes 1-8 were also tested for DNA nuclease activity against pUC19 plasmid DNA which showed that 6 and 7 had the best DNA binding and photonuclease activity; these results support their good protein binding and cleavage activity with binding constants ranging from 104 to 105 M-1. Finally, the in vitro antiproliferative activity of all complexes was assayed against the HeLa cell line. Some of the complexes (2, 5, 6 and 7) show considerable activity compared to commonly used chemotherapeutic drugs. The variation in cytotoxicity of the complexes is influenced by the various functional groups attached to the aroylhydrazone derivative.
Resumo:
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.
Resumo:
Graphene with large surface area and robust structure has been proposed as a high storage capacity anode material for Li ion batteries. While the inertness of pristine graphene leads to better Li kinetics, poor adsorption leads to Li clustering, significantly affecting the performance of the battery. Here, we show the role of defects and doping in achieving enhanced adsorption without compromising on the high diffusivity of Li. Using first principles density functional theory (DFT) calculations, we carry out a comprehensive study of diffusion kinetics of Li over the plane of the defective structures and calculate the change in the number of Li atoms in the vicinity of defects, with respect to pristine graphene. Our results show that the Li-C interaction, storage capacity and the energy barriers depend sensitively on the type of defects. The un-doped and boron doped mono-vacancy, doped di-vacancy up to two boron, one nitrogen doped di-vacancy, and Stone-Wales defects show low energy barriers that are comparable to pristine graphene. Furthermore, boron doping at mono-vacancy enhances the adsorption of Li. In particular, the two boron doped mono-vacancy graphene shows both a low energy barrier of 0.31 eV and better adsorption, and hence can be considered as a potential candidate for anode material.
Resumo:
A newly synthesized and crystalographically characterized napthelene-pyrazol conjugate, 1-(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water-DMSO 5 : 1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and H-1 NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15-20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.
Resumo:
Pyrophosphate oxyanionic framework compounds offer a great platform to investigate new battery materials. In our continuing effort to explore pyrophosphate cathodes for sodium-ion batteries, we report, for the first time, the synthesis and use of tetragonal Na-2(VO)P2O7 as a potential sodium-ion insertion material. This material can be easily prepared by using a conventional solid-state route at a relatively low temperature of 400 degrees C. Stabilizing as a tetragonal structure with an open framework, the material offers pathways for Na+ diffusion. The as-synthesized material, with no further cathode optimization, yields a reversible capacity (Q) approaching 80 mAh g(-1) (Q(Theoretical) = 93.4 mAh g(-1)) involving a one electron V5+/V4+ redox potential located at 3.8 V (vs. Na/Na+). Furthermore, the material exhibits decent rate kinetics and reversibility. Combining green synthesis and moderate electrochemical properties, t-Na-2(VO)P2O7 is reported as a new addition to the growing family of pyrophosphate cathodes for sodium-ion batteries.
Resumo:
This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.
Resumo:
A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m(2)/g with porosity 0.02 cm(3)/g. The surface area for commercial carbon electrode was observed to be 1450 m(2)/g with high porosity 0.76 cm(3)/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts.
Resumo:
Several covalent strategies towards surface charge-reversal in nanochannels have been reported with the purpose of manipulating ion transport. However, covalent routes lack dynamism, modularity and post-synthetic flexibility, and hence restrict their applicability in different environments. Here, we introduce a facile non-covalent approach towards charge-reversal in nanochannels (< 10 nm) using strong charge-transfer interactions between dicationic viologen (acceptor) and trianionic pyranine (donor). The polarity of ion transport was switched from anion selective to ambipolar to cation selective by controlling the extent of viologen bound to the pyranine. We could also regulate the ion transport with respect to pH by selecting a donor with pH-responsive functional groups. The modularity of this approach further allows facile integration of various functional groups capable of responding to stimuli such as light and temperature to modulate the transport of ions as well as molecules.
Resumo:
A newly designed and structurally characterized cell permeable diformyl-p-cresol based receptor (HL) selectively senses the AsO33- ion up to ca. 4.1 ppb in aqueous media over the other competitive ions at biological pH through an intermolecular H-bonding induced CHEF (chelationenhanced fluorescence) process, established by detailed experimental and theoretical studies. This biofriendly probe is highly competent in recognizing the existence of AsO33- ions in a living organism by developing an image under a fluorescence microscope and useful to estimate the amount of arsenite ions in various water samples.
Resumo:
All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.
Resumo:
A new cell permeable quinazoline based receptor (1) selectively senses HSO4- ions of nanomolar region in 0.1 M HEPES buffer (ethanol-water: 1/5, v/v) at biological pH over other competitive ions through the proton transfer followed by hydrogen bond formation and subsequent anion coordination to yield the LHSO4]-LH+center dot 3H(2)O (2) ensemble, which has been crystallographically characterised to ensure the structure property relationship. This non-cytotoxic HSO4- ion selective biomarker has great potential to recognize the intercellular distribution of HSO4- ions in HeLa cells under fluorescence microscope.
Resumo:
We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.