245 resultados para ferromagnetic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an anomalous re-entrant glassy magnetic phase in (l00) oriented ferromagnetic LaMn0.5Co0.5O3 single crystals. The characterization is fortified with conventional magnetometry, like linear as-well-as non-linear ac susceptibility and specific heat. As the sample is cooled below the ferromagnetic transition temperature, it reenters a glassy magnetic phase whose dynamics have little resemblance with the conventional response. The glassy transition shifts to a higher temperature with increasing frequency of the applied ac field. But it does not respond to the dc biasing or memory experiment. Specific heat as well as non-linear ac susceptibility data also do not relate to the conventional glassy response. Unusually low magnetic entropy indicates the lack of long range magnetic ordering. The results demonstrate that the glassy phase in LaMn0.5Co0.5O3 is not due to any of the known conventional origins. We infer that the competing ferromagnetic and antiferromagnetic interaction due to high B-site disorder is responsible for this anomalous re-entrant glassy phase. (C) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an anomalous re-entrant glassy magnetic phase in (l00) oriented ferromagnetic LaMn0.5Co0.5O3 single crystals. The characterization is fortified with conventional magnetometry, like linear as-well-as non-linear ac susceptibility and specific heat. As the sample is cooled below the ferromagnetic transition temperature, it reenters a glassy magnetic phase whose dynamics have little resemblance with the conventional response. The glassy transition shifts to a higher temperature with increasing frequency of the applied ac field. But it does not respond to the dc biasing or memory experiment. Specific heat as well as non-linear ac susceptibility data also do not relate to the conventional glassy response. Unusually low magnetic entropy indicates the lack of long range magnetic ordering. The results demonstrate that the glassy phase in LaMn0.5Co0.5O3 is not due to any of the known conventional origins. We infer that the competing ferromagnetic and antiferromagnetic interaction due to high B-site disorder is responsible for this anomalous re-entrant glassy phase. (C) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new azide bridged copper(II) coordination polymer compounds, Cu-7(N-3)(14)(C3H10N2)(C4H13N3)]n (I) and Cu-7(N-3)(14)(C3H10N2)(C5H15N3)(2)](n) (II) where C3H10N2 = 1,2-diaminopropane (1,2-DAP); C4H13N3 = di-ethylenetriamine (DETA); C5H15N3 = N-2-aminoethyl-1,3-propanediamine (AEDAP)] were prepared by employing a room temperature diffusion technique involving three layers. Single crystal studies reveal that both compounds I and II, have similar connectivity forming Cu7 clusters through end-on (EO) bonding of the azide. The Cu-7 clusters are connected through end-to-end (EE) connectivity of the azides forming three-dimensional structures. Magnetic studies confirmed the ferromagnetic interactions within the Cu-7 units and revealed the occurrence of concomitant ferro- and antiferro-magnetic interactions between these clusters. As a result I behaves as a weak-ferromagnet with T-C = 10 K.