370 resultados para dynamic fracture
Resumo:
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We perform atomistic simulations on the fracture behavior of two typical metallic glasses, one brittle (FeP) and the other ductile (CuZr), and show that brittle fracture in the FeP glass is governed by an intrinsic cavitation mechanism near crack tips in contrast to extensive shear banding in the ductile CuZr glass. We show that a high degree of atomic scale spatial fluctuations in the local properties is the main reason for the observed cavitation behavior in the brittle metallic glass. Our study corroborates with recent experimental observations of nanoscale cavity nucleation found on the brittle fracture surfaces of metallic glasses and provides important insights into the root cause of the ductile versus brittle behavior in such materials.
Resumo:
Superscalar processors currently have the potential to fetch multiple basic blocks per cycle by employing one of several recently proposed instruction fetch mechanisms. However, this increased fetch bandwidth cannot be exploited unless pipeline stages further downstream correspondingly improve. In particular,register renaming a large number of instructions per cycle is diDcult. A large instruction window, needed to receive multiple basic blocks per cycle, will slow down dependence resolution and instruction issue. This paper addresses these and related issues by proposing (i) partitioning of the instruction window into multiple blocks, each holding a dynamic code sequence; (ii) logical partitioning of the registerjle into a global file and several local jles, the latter holding registers local to a dynamic code sequence; (iii) the dynamic recording and reuse of register renaming information for registers local to a dynamic code sequence. Performance studies show these mechanisms improve performance over traditional superscalar processors by factors ranging from 1.5 to a little over 3 for the SPEC Integer programs. Next, it is observed that several of the loops in the benchmarks display vector-like behavior during execution, even if the static loop bodies are likely complex for compile-time vectorization. A dynamic loop vectorization mechanism that builds on top of the above mechanisms is briefly outlined. The mechanism vectorizes up to 60% of the dynamic instructions for some programs, albeit the average number of iterations per loop is quite small.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
In this paper, we consider the synthesis of decentralized dynamic compensators for large systems. The eliminant approach is used to obtain sufficient conditions for the existence of proper, stable, decentralized observer-controllers for stabilizing a large system. An illustrative example is given.
Resumo:
Atomistic simulation of initial < 100 > oriented FCC Cu nanowires shows a novel coupled temperature-pressure dependent reorientation from < 100 > to < 110 > phase. A temperature-pressure-induced solid-solid < 100 > to < 110 > reorientation diagram is generated for Cu nanowire with varying cross-sectional sizes. A critical pressure is reported for Cu nanowires with varying cross-sectional sizes, above which an initial < 100 > oriented nanowire shows temperature independent reorientation into the < 110 > phase. The effect of surface stresses on the < 100 > to < 110 > reorientation is also studied. The results indicate that above a critical cross-sectional size for a given temperature-pressure, < 100 > to < 110 > reorientation is not possible. It is also reported here that for a given applied pressure, an increase in temperature is required for the < 100 > to < 110 > reorientation with increasing cross-sectional size of the nanowire. The temperature-pressure-induced solid-solid < 100 > to < 110 > reorientation diagram reported in the present paper could further be used as guidelines for controlling the reorientations/shape memory in nano-scale applications of FCC metallic nanowires.
Resumo:
Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
By using bender and extender elements test, the velocities of the primary and shear waves, V(P) and V(s) respectively, were measured for a sandy material by gradually varying the degree of saturation, S(r), between the dry and fully saturated states. The effect on the results of varying the relative density and effective confining pressure was also studied. The measurements clearly reveal that for a certain optimum S(r), which is around 0.7-0.9% for the chosen sand, the value of the shear modulus G reaches a maximum value, whereas the corresponding Poisson's ratio nu attains a minimum value. The values of the shear modulus corresponding to S(r) approximate to 0% and S(r) = 100% tend towards the same value. For values of Skempton's B parameter greater than 0.99, the values of V(P) and nu rise very sharply to those of water. The predictions from Biot's theory with respect to the variation of V(P) with S(r) match well with the measured experimental data.
Resumo:
In order to understand the influence of ductile metal interlayer on the overall deformation behavior of metal/nitride multilayer, different configurations of metal and nitride layers were deposited and tested under indentation loading. To provide insight into the trends in deformation with multilayer spacings, an FEM model with elastic-perfect plastic metal layers alternate with an elastic nitride on top of an elastic-plastic substrate. The strong strain mismatch between the metal and nitride layers significantly alters the stress field under contact loading leading to micro-cracking in the nitride, large tensile stresses immediately below the contact, and a transition from columnar sliding in thin metal films to a more uniform bending and microcracking in thicker coatings.
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
The objective of this paper is to propose a numerically integrated modified virtual crack closure integral (NI-MVCCI) technique for fracture analysis of cracked plate panels. NI-MVCCI technique is generalized one and the expressions for computing the strain energy release rate (SERR) are independent of the finite element employed. NI-MVCCI technique has been demonstrated for 4-noded, 8-noded (regular and quarter-point) and 9-noded isoparametric finite elements. Numerical studies on fracture analysis of 2-D crack (mode-I and mode-II) problems have been conducted employing these elements. SERR and stress intensity factors (SIF) have been computed for these problems and found to be in good agreement with the respective analytical solutions available in the literature. The appropriate Gauss numerical integration order to be employed for each of these elements for accurate computation of SERR and SIF has been recommended based on the studies.
Resumo:
In this paper, we investigate the use of reinforcement learning (RL) techniques to the problem of determining dynamic prices in an electronic retail market. As representative models, we consider a single seller market and a two seller market, and formulate the dynamic pricing problem in a setting that easily generalizes to markets with more than two sellers. We first formulate the single seller dynamic pricing problem in the RL framework and solve the problem using the Q-learning algorithm through simulation. Next we model the two seller dynamic pricing problem as a Markovian game and formulate the problem in the RL framework. We solve this problem using actor-critic algorithms through simulation. We believe our approach to solving these problems is a promising way of setting dynamic prices in multi-agent environments. We illustrate the methodology with two illustrative examples of typical retail markets.
Resumo:
Many web sites incorporate dynamic web pages to deliver customized contents to their users. However, dynamic pages result in increased user response times due to their construction overheads. In this paper, we consider mechanisms for reducing these overheads by utilizing the excess capacity with which web servers are typically provisioned. Specifically, we present a caching technique that integrates fragment caching with anticipatory page pre-generation in order to deliver dynamic pages faster during normal operating situations. A feedback mechanism is used to tune the page pre-generation process to match the current system load. The experimental results from a detailed simulation study of our technique indicate that, given a fixed cache budget, page construction speedups of more than fifty percent can be consistently achieved as compared to a pure fragment caching approach.
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.