399 resultados para damped wave equations
Resumo:
In this paper, the classical problem of homogenization of elliptic operators in arbitrary domains with periodically oscillating coefficients is considered. Using Bloch wave decomposition, a new proof of convergence is furnished. It sheds new light and offers an alternate way to view the classical results. In a natural way, this method leads us to work in the Fourier space and thus in a framework dual to the one used by L. Tartar [Problemes d'Homogeneisation dans les Equations aux: Derivees Partielles, Cours Peccot au College de Prance, 1977] in his method of homogenization. Further, this technique offers a nontraditional way of calculating the homogenized coefficients which is easy to implement in the computer.
Resumo:
The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America
Resumo:
The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.
Resumo:
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.
Resumo:
Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].
Resumo:
The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
In this paper, we present a belief propagation (BP) based equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) inter-symbol interference (ISI) channels characterized by severe delay spreads. We employ a Markov random field (MRF) graphical model of the system on which we carry out message passing. The proposed BP equalizer is shown to perform increasingly closer to optimal performance for increasing number of multipath components (MPC) at a much lesser complexity than that of the optimum equalizer. The proposed equalizer performs close to within 0.25 dB of SISO AWGN performance at 10-3 bit error rate on a severely delay-spread MIMO-ISI channel with 20 equal-energy MPCs. We point out that, although MIMO/UWB systems are characterized by fully/densely connected graphical models, the following two proposed features are instrumental in achieving near-optimal performance for large number of MPCs at low complexities: i) use of pairwise compatibility functions in densely connected MRFs, and ii) use of damping of messages.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
We study small perturbations of three linear Delay Differential Equations (DDEs) close to Hopf bifurcation points. In analytical treatments of such equations, many authors recommend a center manifold reduction as a first step. We demonstrate that the method of multiple scales, on simply discarding the infinitely many exponentially decaying components of the complementary solutions obtained at each stage of the approximation, can bypass the explicit center manifold calculation. Analytical approximations obtained for the DDEs studied closely match numerical solutions.
Resumo:
We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
Resumo:
A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.