279 resultados para atomistic defect
Resumo:
Recently, a lot of interest has been centred on the optical properties of hexagonal boron nitride (h-BN), which has a similar lattice structure to graphene. Interestingly, h-BN has a wide bandgap and is biocompatible, so it has potential applications in multiphoton bioimaging, if it can exhibit large nonlinear optical (NLO) properties. However, extensive investigation into the NLO properties of h-BN have not been done so far. Here, NLO properties of 2D h-BN nanosheets (BNNS) are reported for the first time, using 1064-nm NIR laser radiation with a pulse duration of 10 ns using the Z-scan technique. The reverse saturable absorption occurs in aqueous colloidal solutions of BNNS with a very large two-photon absorption cross section (sigma(2PA)) of approximate to 57 x 10(-46) cm(4) s(-1) photon(-1). Also, by using UV-Vis absorption spectroscopy, the temperature coefficient of the bandgap (dE(g)/dT) of BNNS is determined to be 5.9 meV K-1. Further defect-induced photoluminescence emission in the UV region is obtained in the 283-303 K temperature range, under excitations of different wavelengths. The present report of large sigma(2PA) combined with stability and biocompatibility could open up new possibilities for the application of BNNS as a potential optical material for multiphoton bioimaging and advanced photonic devices.
Resumo:
A green electrochemical exfoliation route to produce graphene from graphite electrode has been provided. Saccharin which is a non-toxic and biocompatible artificial sweetener was used as an intercalating agent in aqueous media. Graphene samples were produced using five different exfoliation potentials. Microscopic and spectroscopic analysis confirmed the presence of few layer graphene sheets in as-exfoliated product. Important observations made were: (a) graphene layers from nano-to-micro meter sizes were produced; (b) number of graphene layers decreased with increase in the intercalation potential, (c) yield of graphene increased with increase in the exfoliation potential and (d) defect density in the exfoliated graphene layer was sensitive to the exfoliation potential in a way that with increase in the exfoliation potential the defect density initially increased and then eventually decreased.
Resumo:
We investigated the effect of oxygen flow rate during the reactive magnetron sputtering on the compositional, structural, optical and electrical properties of HfO2 films. We also studied the influence of annealing temperature on the structural and electrical properties of optimized HfO2 films of 25 to 30 nm thick. X-ray photoelectron study reveals that the films deposited at 15 SCCM of oxygen flow rate are stoichiometric and have an optical band gap of 5.86 eV. X-ray diffraction indicates that films without oxygen flow are amorphous, and beyond an oxygen flow rate of 5 SCCM exhibit polycrystalline monoclinic structure. At an annealing temperature of 600 degrees C, tetragonal phase was observed besides the monoclinic phase. The dielectric constant of 11 and low leakage currents of 1 x 10(-7) A/cm(2) were achieved for the stoichiometric films. As-deposited films show significant frequency dispersion due to the presence of defect states at the HfO2/Si interface, and it reduces after annealing.
Resumo:
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.
Resumo:
Controlling optical and electronic properties of graphene via substitutional doping is central to many fascinating applications. Doping graphene with boron (B) or nitrogen (N) has led to p- or n-type graphene; however, the electron mobility in doped-graphene is severely compromised due to increased electron-defect scattering. Here, we demonstrate through Raman spectroscopy, nonlinear optical and ultrafast spectroscopy, and density functional theory that the graphitic dopant configuration is stable in graphene and does not significantly alter electron-electron or electron-phonon scattering, that is otherwise present in doped graphene, by preserving the crystal coherence length (L-a).
Resumo:
Glycosylation has been recognized as one of the most prevalent and complex post-translational modification
Resumo:
Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.
Resumo:
Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.
Resumo:
Melanosomes are a class of lysosome-related organelles produced by melanocytes. Biogenesis of melanosomes requires the transport of melanin-synthesizing enzymes from tubular recycling endosomes to maturing melanosomes. The SNARE proteins involved in these transport or fusion steps have been poorly studied. We found that depletion of syntaxin 13 (STX13, also known as STX12), a recycling endosomal Qa-SNARE, inhibits pigment granule maturation in melanocytes by rerouting the melanosomal proteins such as TYR and TYRP1 to lysosomes. Furthermore, live-cell imaging and electron microscopy studies showed that STX13 co-distributed with melanosomal cargo in the tubular-vesicular endosomes that are closely associated with the maturing melanosomes. STX family proteins contain an N-terminal regulatory domain, and deletion of this domain in STX13 increases both the SNARE activity in vivo and melanosome cargo transport and pigmentation, suggesting that STX13 acts as a fusion SNARE in melanosomal trafficking pathways. In addition, STX13-dependent cargo transport requires the melanosomal R-SNARE VAMP7, and its silencing blocks the melanosome maturation, reflecting a defect in endosome-melanosome fusion. Moreover, we show mutual dependency between STX13 and VAMP7 in regulating their localization for efficient cargo delivery to melanosomes.
Resumo:
High pressure Raman spectroscopic studies on perfluorohexane and perfluoroheptane have performed up to 12 GPa. Perfluorohexane under goes two pressure induced transitions: (1) liquid-solid transition at 1.6 GPa and (2) solid-solid transition at 8.2 GPa. On the contrary, perfluoroheptane under goes three phase transitions, they are as follows: (1) liquid-solid transition at 1.3 GPa, (2) intermediate solid I transition at 3 GPa, (3) solid II transition at 7 GPa. The change in slope (d omega/dP) shows that the solid I transition at 3.0 GPa could be the conversion of mid-gauche defect into trans conformers for perfluoroheptane. The pressure induced Raman spectra and the behavior of individual band with pressure shows that the solid phase comprises more than one conformer beyond crystallization. The intensity ratio for both the compounds shows that the high pressure phase beyond 8.2 and 7.0 GPa tends to have close packing with distorted all-trans conformers. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A new class of dendrimers, the poly(propyl ether imine) (PETIM) dendrimer, has been shown to be a novel hyperbranched polymer having potential applications as a drug delivery vehicle. Structure and dynamics of the amine terminated PETIM dendrimer and their changes with respect to the dendrimer generation are poorly understood. Since most drugs are hydrophobic in nature, the extent of hydrophobicity of the dendrimer core is related to its drug encapsulation and retention efficacy. In this study, we carry out fully atomistic molecular dynamics (MD) simulations to characterize the structure of PETIM (G2-G6) dendrimers in salt solution as a function of dendrimer generation at different protonation levels. Structural properties such as radius of gyration (R-g), radial density distribution, aspect ratio, and asphericity are calculated. In order to assess the hydrophilicity of the dendrimer, we compute the number of bound water molecules in the interior of dendrirner as well as the number of dendrimer-water hydrogen bonds. We conclude that PETIM dendrimers have relatively greater hydrophobicity and flexibility when compared with their extensively investigated PAMAM counterparts. Hence PETIM dendrimers are expected to have stronger interactions with lipid membranes as well as improved drug encapsulation and retention properties when compared with PAMAM dendrimers. We compute the root-mean-square fluctuation of dendrimers as well as their entropy to quantify the flexibility of the dendrimer. Finally we note that structural and solvation properties computed using force field parameters derived based on the CHARMM general purpose force field were in good quantitative agreement with those obtained using the generalized Amber force field (GAFF).
Resumo:
Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25 degrees having an average inter-molecular separation of similar to 5 angstrom. Interestingly, we find an overall tilt angle of 43 degrees between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column. (C) 2015 AIP Publishing LLC.
Resumo:
The reversible transition of wurtzite to rock salt phase under pressure is well reported in literature. The cubic phase is unstable under ambient conditions both in the bulk and in nanoparticles. This paper reports defect-induced stabilization of cubic ZnO phase in sub 20 nm ZnO particles and explores their optical properties. The size reduction was achieved by ball milling in a specially designed mill which allows a control of the milling temperature. The process of synthesis involved both variation of milling temperature (including low temperature similar to 150 K) and impact pressure. We show that these have profound influence in the introduction of defects and stabilization of the cubic phase. A molecular dynamics simulation is presented to explain the observed results. The measured optical properties have further supported the observations of defect-induced stabilization of cubic ZnO and reduction in particle size.
Resumo:
We report the temperature-dependent photoluminescence and Raman spectra of In2O3 octahedrons synthesized by an evaporation condensation process. The luminescence obtained here is due to the defect-related deep level emission, which shows highly temperature-dependent behavior in 83-573 K range. Both the position as well as the intensity varies with temperature. Similarly, Raman spectroscopy in 83-303 K range shows temperature-dependent variation in peak intensity but no change in the peak position. Interestingly, the variation of intensity for different peaks is consistent with Placzek theory which invokes the possibility of temperature sensing. We demonstrate the reversibility of peak intensity with temperature for consecutive cycles and excellent stability of the octahedrons toward cryogenic temperature sensing. Overall, both the temperature-dependent photoluminescence and Raman spectra can be explored to determine temperature in the cryogenic range at micro/nano length scales. As an example, we evaluate the temperature-dependent Raman spectra of WO3 that undergoes a phase transition around 210 K and temperature-dependent luminescence of Rhodamine 6G (Rh6G) where intensity varies with temperature.
Resumo:
The present work discusses the findings obtained from simulations of semi solid die filling of a steering knuckle, prior to actual component development using in-house developed rheo pressure die casting system. Die filling capability of A356 Al alloy at semi-solid state has been investigated using commercial software Flow-3Dcast to optimise the pouring temperature of semi-solid slurry into the die cavity, while all other variables such as gating design, die preheat temperature and injection velocity are kept constant based on the prior knowledge obtained from trial numerical simulations and experimentation. Efforts have been made to nullify the essence of costly, time consuming experiments towards obtaining high-quality castings out of the findings obtained from numerical simulations. The optimum pouring temperature identified in the present study is 610 A degrees C, which facilitates smoother slurry flow, minimum surface defect concentration, uniform temperature field and solid fraction distribution within the component cavity.