250 resultados para antiferromagnetic materials
Resumo:
In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.
Resumo:
Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.
Resumo:
An optical-phonon-limited velocity model has been employed to investigate high-field transport in a selection of layered 2-D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors. Drain currents, effective electron velocities, and intrinsic cutoff frequencies as a function of carrier density have been predicted, thus providing a benchmark for the optical-phonon-limited high-field performance limits of these materials. The optical-phonon-limited carrier velocities for a selection of multi-layers of transition metal dichalcogenides and black phosphorus are found to be modest compared to their n-channel silicon counterparts, questioning the utility of biasing these devices in the source-injection dominated regime. h-BN, at the other end of the spectrum, is shown to be a very promising material for high-frequency, high-power devices, subject to the experimental realization of high carrier densities, primarily due to its large optical-phonon energy. Experimentally extracted saturation velocities from few-layer MoS2 devices show reasonable qualitative and quantitative agreement with the predicted values. The temperature dependence of the measured v(sat) is discussed and compared with the theoretically predicted dependence over a range of temperatures.
Resumo:
Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.
Resumo:
We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.
Resumo:
When one starts to analyze the evolution of the interfacial reaction product layers between dissimilar materials it is often found out that as the number of interacting species grows, the complexity of the analysis increases extremely rapidly. It may even appear that the task is just too difficult to be completed. In this article we present the thermodynamic-kinetic method, which can be used to rationalize the evolution of interfacial reaction layers and bring back the physics to the analyses. The method is conceptually very simple. It combines energetics-what can happen-with kinetics-how fast things take place. Yet the method is flexible enough that it can utilize quantitative and qualitative data starting from the atomistic simulations up to the experiments carried out with bulk materials. Several examples about how to utilize this method in material scientific problems are given.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.
Resumo:
Applications of hydriding materials for solid state hydrogen storage, hydrogen compression, thermal energy storage and sorption heating and cooling systems have been demonstrated successfully. However, the performance of these devices significantly depends upon heat and mass transfer characteristics of the reactive packed beds. One of the important parameters regulating heat and mass transfer in the hydriding bed is its effective thermal conductivity (ETC), which is dependent on several operating parameters such as pressure and temperature. ETC also varies significantly due to the variation of hydrogen concentration during the hydriding and dehydriding processes. Based on the extensive studies done by the authors on ETC of metal hydride beds, a review of experimental methods, mathematical studies and augmentation techniques is presented in this paper, with emphasis on the effects of operating parameters on ETC. (C) 2016 Elsevier Ltd. All rights reserved.