265 resultados para Yb3 doping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carrier density dependent current-voltage (J V) characteristics of electrochemically prepared poly(3-methylthiophene) (P3MeT) have been investigated in Pt/P3MeT/Al devices, as a function of temperature from 280 to 84 K. In these devices, the charge transport is found to be mainly governed by different transport regimes of space charge limited conduction (SCLC). In a lightly doped device, SCLC controlled by exponentially distributed traps (Vl+1 law, l > 1) is observed in the intermediate voltage range (0.5-2 V) at all temperatures. However, at higher bias (> 2 V), the current deviates from the usual Vl+1 law where the slope is found to be less than 2 of the logJ-logV plot, which is attributed to the presence of the injection barrier. These deviations gradually disappear at higher doping level due to reduction in the injection barrier. Numerical simulations of the Vl+1 law by introducing the injection barrier show good agreement with experimental data. The results show that carrier density can tune the charge transport mechanism in Pt/P3MeT/Al devices to understand the non-Ohmic behavior. The plausible reasons for the origin of injection barrier and the transitions in the transport mechanism with carrier density are discussed. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buffer leakage is an important parasitic loss mechanism in AlGaN/GaN high electron mobility transistors (HEMTs) and hence various methods are employed to grow semi-insulating buffer layers. Quantification of carrier concentration in such buffers using conventional capacitance based profiling techniques is challenging due to their fully depleted nature even at zero bias voltages. We provide a simple and effective model to extract carrier concentrations in fully depleted GaN films using capacitance-voltage (C-V) measurements. Extensive mercury probe C-V profiling has been performed on GaN films of differing thicknesses and doping levels in order to validate this model. Carrier concentrations as extracted from both the conventional C-V technique for partially depleted films having the same doping concentration, and Hall measurements show excellent agreement with those predicted by the proposed model thus establishing the utility of this technique. This model can be readily extended to estimate background carrier concentrations from the depletion region capacitances of HEMT structures and fully depleted films of any class of semiconductor materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present experimental and theoretical results on monolayer colloidal cadmium selenide quantum dot films embedded with tiny gold nanoparticles. By varying the density of the embedded gold nanoparticles, we were able to engineer a plasmon-mediated crossover from emission quenching to enhancement regime at interparticle distances for which only quenching of emission is expected. This crossover and a nonmonotonic variation of photoluminescence intensity and decay rate, in experiments, is explained in terms of a model for plasmon-mediated collective emission of quantum emitters which points to the emergence of a new regime in plasmon-exciton interactions. The presented methodology to achieve enhancement in optical quantum efficiency for optimal doping of gold nanoparticles in such ultrathin high-density quantum dot films can be beneficial for new-generation displays and photodetectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report the hydrothermal synthesis of boron-doped CNPs (B-CNPs) with different size/atomic percentage of doping and size-independent color tunability from red to blue. The variation of size/atomic percentage of B is achieved by simply varying the reaction time, while the color tunability is obtained by diluting the solution. With dilution, the luminescence spectra are not only blue-shifted, the intensity increases as well. The huge blue-shift in the emission energy (similar to 1 eV) is believed to be due to the increase in the interparticle distance. The quantum yield with optimum dilution is found to increase with boron doping though it is very low as compared to CNPs and nitrogen-doped CNPs. Finally, we show that B-CNPs with a quantum yield of 0.5% can be used for bioimaging applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahedrites are natural earth-abundant minerals consisting of environmentally-friendly elements of copper and sulphur. Recently, research has been focused on the natural and synthetic minerals of tetrahedrite materials for thermoelectric applications. The thermoelectric figure of merit zT of around unity at similar to 723 K for many doped and natural tetrahedrite materials in the past 2-3 years was determined and this value is comparable to conventional p-type TE materials. In this review, a brief history of tetrahedrite materials is followed by information about its crystal structure and chemical bonding, electronic band structure and transport properties. Different synthesis approaches have been summarized. Also, this review outlines the effect of different doping elements on the thermoelectric properties of tetrahedrite materials, and the natural mineral tetrahedrite that can be used as thermoelectric materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tb1-xSrxMnO3 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) polycrystalline samples are prepared via conventional solid state synthesis route. All samples crystallize in orthorhombic Pnma space group and possess O'-type distortion. Orthorhombic and octahedral distortion is found to decrease with increase in Sr content. At intermediate distortion, (20% and 30% doping level) Curie-Weiss analysis of inverse dc magnetic susceptibility data yields +ve Curies-Weiss constant, characteristic of FM interaction. Isothermal magnetization measurements give the highest magnitude of magnetic moment at these compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS(2-)channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene- metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes. (c) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gadolinium oxide, cerium oxide, and 10 mol% gadolinia doped ceria ceramic powders have been synthesized using combustion technique. Though the cubic gadolinia phase is stable at room temperature, single phase monoclinic gadolinia was obtained as a result of combustion synthesis using fuel lean and stoichiometric precursor compositions. This powder was subjected to calcination treatment and ceria doping to study the stability of phases and the rate of phase transformation from monoclinic to cubic gadolinia. It was found that monoclinic gadolinia transforms to cubic gadolinia upon calcination at temperatures less than 1200 degrees C. It was also found that rate of phase transformation is more for powder produced using fuel lean compositions; and the rate is enhanced upon ceria doping. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (sigma) and large thermopower leading to a high power factor (S-2 sigma) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (v(g)). Consequently, lowering the lattice thermal conductivity (kappa(latt)) below 2 W/m K. Low kappa(latt) combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZT(max) of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application. (C) 2015 AIP Publishing LLC.