250 resultados para X-ray computed tomography
Determination of band offsets at the Al:ZnO/Cu2SnS3 interface using X-ray photoelectron spectroscopy
Resumo:
The Al:ZnO/Cu2SnS3 semiconductor heterojunction was fabricated. The structural and optical properties of the semiconductor materials were studied. The band offset at the Al:ZnO/Cu2SnS3 heterojunction was studied using X-ray photoelectron spectroscopy technique. From the measurement of the core level energies and valence band maximum of the constituent elements, the valence band offset was calculated to be -1.1 +/- 0.24 eV and the conduction band offset was 0.9 +/- 0.34 eV. The band alignment at the heterojunction was found to be of type-I. The study of Al:ZnO/Cu2SnS3 heterojunction is useful for solar cell applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1168-1179, 2015.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.
Resumo:
Detailed investigation of the chemical states and local atomic environment of Ni and Zn in the two-phase composites of Zn1-xNixO/NiO was reported. The X-ray photoelectron spectra of both Ni-2p and Zn-2p revealed the existence of a doublet with spin-orbit splitting approximate to 17.9 and 23.2eV, respectively confirming the divalent oxidation state of both Ni and Zn. However, the samples fabricated under oxygen-rich conditions exhibit significant difference in the binding energy approximate to 18.75eV between the 2p3/2 and 2p1/2 states of Ni. The shift in the satellite peaks of Ni-2p with increasing the Ni composition x within the Zn1-xNixO/NiO matrix signifies the attenuation of nonlocal screening because of reduced site occupancy of two adjacent Zn ions. The temperature dependence of X-ray diffraction analysis reveals a large distortion in the axial-rhombohedral angle for oxygen-rich NiO. Conversely, no significant distortion was noticed in the NiO system present as a secondary phase within Zn1-xNixO. Nevertheless, the unit-cell volume of both wurtzite h.c.p. Zn1-xNixO and f.c.c. NiO exhibits an anomalous behavior between 150 and 300 degrees C. The origin of such unusual change in the unit-cell volume was discussed in terms of oxygen stoichiometry.
Resumo:
X-ray Photoelectron Spectroscopy (XPS) plays a central role in the investigation of electronic properties as well as compositional analysis of almost every conceivable material. However, a very short inelastic mean free path (IMFP) and the limited photon flux in standard laboratory conditions render this technique very much surface sensitive. Thus, the electronic structure buried below several layers of a heterogeneous sample is not accessible with usual photoemission techniques. An obvious way to overcome this limitation is to use a considerably higher energy photon source, as this increases the IMFP of the photo-ejected electron, thereby making the technique more depth and bulk sensitive. Due to this obvious advantage, Hard X-ray Photo Electron Spectroscopy (HAXPES) is rapidly becoming an extremely powerful tool for chemical, elemental, compositional and electronic characterization of bulk systems, more so with reference to systems characterized by the presence of buried interfaces and other types of chemical heterogeneity. The relevance of such an investigative tool becomes evident when we specifically note the ever-increasing importance of heterostructures and interfaces in the context of a wide range of device applications, spanning electronic, magnetic, optical and energy applications. The interest in this nondestructive, element specific HAXPES technique has grown rapidly in the past few years; we discuss critically its extensive use in the study of depth resolved electronic properties of nanocrystals, multilayer superlattices and buried interfaces, revealing their internal structures. We specifically present a comparative discussion, with examples, on two most commonly used methods to determine internal structures of heterostructured systems using XPS. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.
Resumo:
Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.
Resumo:
We study the diffuse X-ray luminosity (L-X) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of L-X with star formation rate (SFR) as L-X alpha SFR2 for SFR greater than or similar to 1 M-circle dot yr(-1), and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the L-X-SFR relation for low SFRs (less than or similar to few M-circle dot yr(-1)). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.
Resumo:
Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.