265 resultados para Structural phase transition
Resumo:
Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle's neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Metallic and other type of coatings on fiber Bragg grating (FBG) sensors alter their sensitivity with thermal and mechanical stress while protecting the fragile optical fiber in harsh sensing surroundings. The behavior of the coated materials is unique in their response to thermal and mechanical stress depending on the thickness and the mode of coating. The thermal stress during the coating affects the temperature sensitivity of FBG sensors. We have explored the thermal response of FBGs coated with Al and Pb to an average thickness of 80 nm using flash evaporation technique where the FBG sensor is mounted in a region at room temperature in an evacuated chamber having a pressure of 10(6) Torr which will minimize any thermal stress during the coating process. The coating thickness is chosen in the nanometer region with the aim to study thermal behavior of nanocoatings and their effect on FBG sensitivity. The sensitivity of FBGs is evaluated from the wavelengths recorded using an optical sensing interrogator sm 130 (Micron Optics) from room temperature to 300 degrees C both during heating and cooling. It is observed that the sensitivity of the metal coated fibers is better than the reference FBG with no coating for the entire range of temperature. For a coating thickness of 80 nm, Al coated FBG is more sensitive than the one coated with Pb up to 170 degrees C and it reverses at higher temperatures. This point is identified as a reversible phase transition in Pb monolayers as the 2-dimensional aspects of the metal layers are dominant in the nanocoatings of Pb. On cooling, the phase transition reverses and the FBGs return to the original state and for repeated cycles of heating and cooling the same pattern is observed. Thus the FBG functions as a sensor of the phase transitions of the coatings also. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303
Resumo:
In the present study, variable temperature FT-IR spectroscopic investigations were used to characterize the spectral changes in oleic acid during heating oleic acid in the temperature range from -30 degrees;C to 22 degrees C. In order to extract more information about the spectral variations taking place during the phase transition process, 2D correlation spectroscopy (2DCOS) was employed for the stretching (C?O) and rocking (CH2) band of oleic acid. However, the interpretation of these spectral variations in the FT-IR spectra is not straightforward, because the absorption bands are heavily overlapped and change due to two processes: recrystallization of the ?-phase and melting of the oleic acid. Furthermore, the solid phase transition from the ?- to the a-phase was also observed between -4 degrees C and -2 degrees C. Thus, for a more detailed 2DCOS analysis, we have split up the spectral data set in the subsets recorded between -30 degrees C to -16 degrees C, -16 degrees C to 10 degrees C, and 10 degrees C to 22 degrees C. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands that are characteristic of the crystalline and amorphous regions of oleic acid were separated.
Resumo:
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting Ca(Fe0.944Co0.056)(2)As-2 single crystals by measuring transient reflectivity changes using femtosecond time-resolved pump-probe spectroscopy. Large changes in the temperature-dependent differential reflectivity values in the vicinity of the spin density wave (T-SDW) and superconducting (T-SC) transition temperatures of the sample have been inferred to have charge gap opening at those temperatures. We have estimated the zero-temperature charge gap value in the superconducting state to be similar to 1.8k(B)T(SC) and an electron-phonon coupling constant lambda of similar to 0.1 in the normal state that signifies the weak coupling in iron pnictides. From the peculiar temperature-dependence of the quasiparticle dynamics in the intermediate temperature region between T-SC and T-SDW we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
Resumo:
In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.
Resumo:
The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.
Resumo:
We determine the nature of coupled phonons in mixed crystal of Cs-0.9(NH4)(0.1)H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60-1100 cm(-1). The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v(1)) and antisymmetric (v(3)) stretching vibrations associated with AsO4 tetrahedra below transition temperature (T-c(*) similar to 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v(4) (S9, S11) and v(2) (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at similar to 92 cm(-1) shows anomalous blue shift (similar to 12 %) from 300 K to 5 K with no sharp transition near T-c(*) unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode. (C) 2013 Author(s).
Resumo:
In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.
Resumo:
We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.
Resumo:
We study a system of hard-core boson on a one-dimensional lattice with frustrated next-nearest-neighbor hopping and nearest-neighbor interaction. At half filling, for equal magnitude of nearest- and next-nearest-neighbor hopping, the ground state of this system exhibits a first-order phase transition from a bond-ordered solid to a charge-density-wave solid as a function of the nearest- neighbor interaction. Moving away from half filling we investigate the system at incommensurate densities, where we find a supersolid phase which has concurrent off-diagonal long-range order and density-wave order which is unusual in a system of hard-core bosons in one dimension. Using the finite-size density-matrix renormalization group method, we obtain the complete phase diagram for this model.
Resumo:
We present femtosecond time-resolved pump-probe spectroscopic studies of a pseudogap (PG) along with the superconducting (SC) gap in an overdoped iron pnictide Ca(Fe0.927Co0.073)(2)As-2. It is seen that the temperature evolution of the photo-excited quasiparticle (QP) relaxation dynamics, coherently excited A(1g)-symmetric optical phonon and two acoustic phonon dynamics behave anomalously in the vicinity of the superconducting transition temperature T-c. A continuous change in the sign of the experimentally measured transient differential reflectivity Delta R/R signal at the zero time delay between the pump and probe pulses at a temperature of similar to 200K is inferred as an evidence of the emergence of the PG phase around that temperature. This behavior is independent of the pump photon energy and occurs for crystals without the spin density wave phase transition. Copyright (C) EPLA, 2014
Resumo:
The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.
Resumo:
Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.
Resumo:
The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.