471 resultados para SINGLE-CRYSTALLINE
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Atomically resolved scanning tunneling microscopy was conducted on cleaved single crystals of the cubic perovskite Pr0.68Pb0.32MnO3.Several different surface configurations could be resolved including a frequent square arrangement with atomic distances in excellent agreement to the bulk lattice constant of the cubic structure. We also observed stripe formation and a surface reconstruction. The latter is likely related to a polar rare earth-oxygen terminated surface. (C) 2010 American Institute of Physics.
Resumo:
Raman spectra of single crystals of β-malonic acid and β-succinic acid have been photographed using λ 2536·5 radiation. 32 Raman lines have been recorded in the case of β-malonic acid. Of these 21 lines have been recorded for the first time. The three intense lattice lines at 52, 90 and 144 cm.-1 have been attributed to rotational lattice oscillations. 29 Raman lines in the case of β-succinic acid have been recorded. The entire lattice spectrum and many internal frequencies have been recorded for the first time. The three intense lattice lines at 80, 135 and 160 cm.-1 have been assigned to the rotational oscillations of the two molecules of the succinic acid in the unit cell.
Resumo:
The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Discrimination of Bell states plays an important role in a number of quantum computational protocols such as teleportation and secret sharing. However, most of the protocols dealing with Bell state discrimination in the literature either involve performing correlated measurements or destroying the entanglement of the system. Here, we demonstrate an NMR-based experimental realization of a protocol for Bell state discrimination, following a scheme proposed by Gupta et al (quant-ph/0504183v1, 23 April 2005), which does not destroy the Bell state under consideration. Using the proposed protocol, one can deterministically distinguish the Bell states, without performing a measurement using the entangled basis. State discrimination is performed through two independent measurements on one ancilla qubit, which leaves the Bell states unchanged.
Resumo:
We propose and demonstrate a dynamic point spread function (PSF) for single and multiphoton fluorescence microscopy. The goal is to generate a PSF whose shape and size can be maneuvered from highly localized to elongated one, thereby allowing shallow-to-depth excitation capability during active imaging. The PSF is obtained by utilizing specially designed spatial filter and dynamically altering the filter parameters. We predict potential applications in nanobioimaging and fluorescence microscopy.
Resumo:
We propose and demonstrate a dynamic point spread function (PSF) for single and multiphoton fluorescence microscopy. The goal is to generate a PSF whose shape and size can be maneuvered from highly localized to elongated one, thereby allowing shallow-to-depth excitation capability during active imaging. The PSF is obtained by utilizing specially designed spatial filter and dynamically altering the filter parameters. We predict potential applications in nanobioimaging and fluorescence microscopy.
Resumo:
We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.
Resumo:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time