275 resultados para Quantum dimension


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent carbon quantum dots (CQD) induce macromolecular crowding making them suitable for probing the structure, function and dynamics of both hydrophilic and hydrophobic peptides/proteins under near in-cell conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute logarithmic corrections to the twisted index B-6(g) in four-dimensional N = 4 and N = 8 string theories using the framework of the Quantum Entropy Function. We find that these vanish, matching perfectly with the large-charge expansion of the corresponding microscopic expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemically-induced nanorod to quantum dot transition is reported in ZnO. This transition is achieved using co-surfactants in a marginally polar solvent in chimie douce (soft chemical) conditions. This is different from the physical instability driven transitions reported so far in metal nanowires and polymers. We propose a suitable mechanism for the observed phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two hydroxycinnamic acids viz., p-coumaric, and caffeic acids have been extracted and purified from Parthenium hysterophorus, subsequently characterized by elemental analysis, FT-IR, NMR, single crystal X-ray crystallography. The optimized structures of these acids were calculated in terms of density functional theory by Gaussian 09. The validation of experimental and theoretically obtained data for structural parameters such as bond lengths and bond angles has have been carried out to analyze the statistical significance by curve fitting analysis and the values of correlation coefficient found to be 0.985, 0.992, and 0.984, 0.975 in p-coumaric, and caffeic acids, respectively. The calculated HOMO and LUMO energies show the eventual charge transfer interaction within the molecule. Thermal studies were also carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in R-k such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total orders of the vertices of G such that for any two disjoint edges of G, there exists at least one total order in F in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on n vertices is Theta(log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree d is at most 2(9) (log*d)d. We also demonstrate that the above bound is nearly tight by showing that, for every d, almost all d-regular graphs have separation dimension at least d/2]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a quantum particle, moving on a lattice with a tight-binding Hamiltonian, which is subjected to measurements to detect its arrival at a particular chosen set of sites. The projective measurements are made at regular time intervals tau, and we consider the evolution of the wave function until the time a detection occurs. We study the probabilities of its first detection at some time and, conversely, the probability of it not being detected (i.e., surviving) up to that time. We propose a general perturbative approach for understanding the dynamics which maps the evolution operator, which consists of unitary transformations followed by projections, to one described by a non-Hermitian Hamiltonian. For some examples of a particle moving on one-and two-dimensional lattices with one or more detection sites, we use this approach to find exact expressions for the survival probability and find excellent agreement with direct numerical results. A mean-field model with hopping between all pairs of sites and detection at one site is solved exactly. For the one-and two-dimensional systems, the survival probability is shown to have a power-law decay with time, where the power depends on the initial position of the particle. Finally, we show an interesting and nontrivial connection between the dynamics of the particle in our model and the evolution of a particle under a non-Hermitian Hamiltonian with a large absorbing potential at some sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluctuations exhibited by the cross sections generated in a compound-nucleus reaction or, more generally, in a quantum-chaotic scattering process, when varying the excitation energy or another external parameter, are characterized by the width Gamma(corr) of the cross-section correlation function. Brink and Stephen Phys. Lett. 5, 77 (1963)] proposed a method for its determination by simply counting the number of maxima featured by the cross sections as a function of the parameter under consideration. They stated that the product of the average number of maxima per unit energy range and Gamma(corr) is constant in the Ercison region of strongly overlapping resonances. We use the analogy between the scattering formalism for compound-nucleus reactions and for microwave resonators to test this method experimentally with unprecedented accuracy using large data sets and propose an analytical description for the regions of isolated and overlapping resonances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin-and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter `S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 mu eV K-1, compared to the bulk value of 0.72 mu eV K-1. To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.