250 resultados para Prediction techniques
Resumo:
This paper proposes a probabilistic prediction based approach for providing Quality of Service (QoS) to delay sensitive traffic for Internet of Things (IoT). A joint packet scheduling and dynamic bandwidth allocation scheme is proposed to provide service differentiation and preferential treatment to delay sensitive traffic. The scheduler focuses on reducing the waiting time of high priority delay sensitive services in the queue and simultaneously keeping the waiting time of other services within tolerable limits. The scheme uses the difference in probability of average queue length of high priority packets at previous cycle and current cycle to determine the probability of average weight required in the current cycle. This offers optimized bandwidth allocation to all the services by avoiding distribution of excess resources for high priority services and yet guaranteeing the services for it. The performance of the algorithm is investigated using MPEG-4 traffic traces under different system loading. The results show the improved performance with respect to waiting time for scheduling high priority packets and simultaneously keeping tolerable limits for waiting time and packet loss for other services. Crown Copyright (C) 2015 Published by Elsevier B.V.
Resumo:
Numerical simulations were performed of experiments from a cascade of stator blades at three low Reynolds numbers representative of flight conditions. Solutions were assessed by comparing blade surface pressures, velocity and turbulence intensity along blade normals at several stations along the suction surface and in the wake. At Re = 210,000 and 380,000 the laminar boundary layer over the suction surface separates and reattaches with significant turbulence fluctuations. A new 3-equation transition model, the k-k(L)-omega model, was used to simulate this flow. Predicted locations of the separation bubble, and profiles of velocity and turbulence fluctuations on blade-normal lines at various stations along the blade were found to be quite close to measurements. Suction surface pressure distributions were not as close at the lower Re. The solution with the standard k-omega SST model showed significant differences in all quantities. At Re = 640,000 transition occurs earlier and it is a turbulent boundary layer that separates near the trailing edge. The solution with the Reynolds stress model was found to be quite close to the experiment in the separated region also, unlike the k-omega SST solution. Three-dimensional computations were performed at Re = 380,000 and 640,000. In both cases there were no significant differences between the midspan solution from 3D computations and the 2D solutions. However, the 3D solutions exhibited flow features observed in the experiments the nearly 2D structure of the flow over most of the span at 380,000 and the spanwise growth of corner vortices from the endwall at 640,000.
Resumo:
Several soil microbes are present in the rhizosphere zone, especially plant growth promoting rhizobacteria (PGPR), which are best known for their plant growth promoting activities. The present study reflects the effect of gold nanoparticles (GNPs) at various concentrations on the growth of PGPR. GNPs were synthesized chemically, by reduction of HAuCl 4, and further characterized by UV-Vis spectroscopy, X-ray diffraction technique (XRD), and transmission electron microscopy (TEM), etc. The impact of GNPs on PGPR was investigated by Clinical Laboratory Standards Institute (CLSI) recommended Broth-Microdilution technique against four selected PGPR viz., Pseudomonas fluorescens, Bacillus subtilis, Paenibacillus elgii, and Pseudomonas putida. Neither accelerating nor reducing impact was observed in P. putida due to GNPs. On the contrary, significant increase was observed in the case of P. fluorescens, P. elgii, and B. subtilis, and hence, GNPs can be exploited as nano-biofertilizers.
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.
Resumo:
Electronically nonadiabatic decomposition pathways of guanidium triazolate are explored theoretically. Nonadiabatically coupled potential energy surfaces are explored at the complete active space self-consistent field (CASSCF) level of theory. For better estimation of energies complete active space second order perturbation theories (CASPT2 and CASMP2) are also employed. Density functional theory (DFT) with B3LYP functional and MP2 level of theory are used to explore subsequent ground state decomposition pathways. In comparison with all possible stable decomposition products (such as, N-2, NH3, HNC, HCN, NH2CN and CH3NC), only NH3 (with NH2CN) and N-2 are predicted to be energetically most accessible initial decomposition products. Furthermore, different conical intersections between the S-1 and S-0 surfaces, which are computed at the CASSCF(14,10)/6-31G(d) level of theory, are found to play an essential role in the excited state deactivation process of guanidium triazolate. This is the first report on the electronically nonadiabatic decomposition mechanisms of isolated guanidium triazolate salt. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
Computer Assisted Assessment (CAA) has been existing for several years now. While some forms of CAA do not require sophisticated text understanding (e.g., multiple choice questions), there are also student answers that consist of free text and require analysis of text in the answer. Research towards the latter till date has concentrated on two main sub-tasks: (i) grading of essays, which is done mainly by checking the style, correctness of grammar, and coherence of the essay and (ii) assessment of short free-text answers. In this paper, we present a structured view of relevant research in automated assessment techniques for short free-text answers. We review papers spanning the last 15 years of research with emphasis on recent papers. Our main objectives are two folds. First we present the survey in a structured way by segregating information on dataset, problem formulation, techniques, and evaluation measures. Second we present a discussion on some of the potential future directions in this domain which we hope would be helpful for researchers.
Resumo:
Numerical simulation of separated flows in rocket nozzles is challenging because existing turbulence models are unable to predict it correctly. This paper addresses this issue with the Spalart-Allmaras and Shear Stress Transport (SST) eddy-viscosity models, which predict flow separation with moderate success. Their performances have been compared against experimental data for a conical and two contoured subscale nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the nozzle pressure ratio (NPR) and nozzle type. A careful assessment indicated how the model had to be tuned for better, consistent prediction. It is learnt that SST model's failure is caused by limiting of the shear stress inside boundary layer according to Bradshaw's assumption, and by over prediction of jet spreading rate. Accordingly, SST's coefficients were empirically modified to match the experimental wall pressure data. Results confirm that accurate RANS prediction of separation depends on the correct capture of the jet spreading rate, and that it is feasible over a wide range of NPRs by modified values of the diffusion coefficients in the turbulence model. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Two-dimensional magnetic recording 2-D (TDMR) is a promising technology for next generation magnetic storage systems based on a systems-level framework involving sophisticated signal processing at the core. The TDMR channel suffers from severe jitter noise along with electronic noise that needs to be mitigated during signal detection and recovery. Recently, we developed noise prediction-based techniques coupled with advanced signal detectors to work with these systems. However, it is important to understand the role of harmful patterns that can be avoided during the encoding process. In this paper, we investigate the Voronoi-based media model to study the harmful patterns over multitrack shingled recording systems. Through realistic quasi-micromagnetic simulation studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multitrack detection with constrained coded data. We show that the 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit-error rate for the TDMR systems. The use of constrained codes can reduce the complexity of 2-D intersymbol interference (ISI) signal detection, since the lesser 2-D ISI span can be accommodated at the cost of a nominal code rate loss. However, a system must be designed carefully so that the rate loss incurred by a 2-D constraint does not offset the detector performance gain due to more distinguishable readback signals.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.