250 resultados para POLYMER BLEND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiction stir processing (FSP) is a solid state technique used for material processing. Tool wear and the agglomeration of ceramic particles have been serious issues in FSP of metal matrix composites. In the present study, FSP has been employed to disperse the nanoscale particles of a polymer-derived silicon carbonitride (SiCN) ceramic phase into copper by an in-situ process. SiCN cross linked polymer particles were incorporated using multi-pass ESP into pure copper to form bulk particulate metal matrix composites. The polymer was then converted into ceramic through an in-situ pyrolysis process and dispersed by ESP. Multi-pass processing was carried out to remove porosity from the samples and also for the uniform dispersion of polymer derived ceramic particles. Microstructural observations were carried out using Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) of the composite. The results indicate a uniform distribution of similar to 100 nm size particles of the ceramic phase in the copper matrix after ESP. The nanocomposite exhibits a five fold increase in microhardness (260HV(100)) which is attributed to the nano scale dispersion of ceramic particles. A mechanism has been proposed for the fracturing of PDC particles during multi pass FSP. (C) 2015 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by observations of non-exponential decay times in the stochastic binding and release of ligand-receptor systems, exemplified by the work of Rogers et al on optically trapped DNA-coated colloids (Rogers et al 2013 Soft Matter 9 6412), we explore the general problem of polymer-mediated surface adhesion using a simplified model of the phenomenon in which a single polymer molecule, fixed at one end, binds through a ligand at its opposite end to a flat surface a fixed distance L away and uniformly covered with receptor sites. Working within the Wilemski-Fixman approximation to diffusion-controlled reactions, we show that for a flexible Gaussian chain, the predicted distribution of times f(t) for which the ligand and receptor are bound is given, for times much shorter than the longest relaxation time of the polymer, by a power law of the form t(-1/4). We also show when the effects of chain stiffness are incorporated into this model (approximately), the structure of f(t) is altered to t(-1/2). These results broadly mirror the experimental trends in the work cited above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Youngs modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 mu m modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have reported a new approach on the use of stimuli-responsive molecularly imprinted polymer (MIP) for trace level sensing of alpha-fetoprotein (AFP), which is a well know cancer biomarker. The stimuli-responsive MIP is composed of three components, a thermo-responsive monomer, a pH responsive component (tyrosine derivative) and a highly fluorescent vinyl silane modified carbon dot. The synthesized AFP-imprinted polymer possesses excellent selectivity towards their template molecule and dual-stimuli responsive behavior. Along with this, the imprinted polymer was also explored as `OR' logic gate with two stimuli (pH and temperature) as inputs. However, the non-imprinted polymers did not have such `OR' gate property, which confirms the role of template binding. The imprinted polymer was also used for estimation of AFP in the concentration range of 3.96-80.0 ng mL(-1), with limit of detection (LOD) 0.42 ng mL(-1). The role of proposed sensor was successfully exploited for analysis of AFP in real human blood plasma, serum and urine sample. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modular, general method for trapping enzymes within the voids of paper, without chemical activation of cellulose, is reported. Glucose oxidase and peroxidase were crosslinked with poly(acrylic acid) via carbodiimide chemistry, producing 3-dimensional networks interlocked in cellulose fibers. Interlocking prevented enzyme activity loss and enhanced the washability and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corona discharges resulting from the metal parts of insulators and the line hardware affect the long term performance of the polymeric insulators used for outdoor application and can lead to its eventual failure. The authors previous work, involved in developing a new methodology to evaluate the performance of polymeric shed materials subjected to corona stresses in the presence of natural fog condition, results revealed more surface hydroxylation thereby resulting in more loss of hydropobhicity. With the increase in industrialization, there is an increase in acidic component of the rain as well as the fog (moisture). The present work, reports the effect of acid fog on the corona performance of the polymeric insulators for both AC and DC excitation, interesting results are obtained. A comparison of the experimental investigations revealed that the acidic fog has more effect than that of the normal fog. This fact has been confirmed by physico-chemical analysis like the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) and contact angle measurement. The effect of DC corona is found to be lesser in comparison with the AC; however the hydroxylation induced by the DC corona under the presence of fog is similar with that of AC excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.