412 resultados para Offshore structures.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.
Resumo:
A fundamental task in bioinformatics involves a transfer of knowledge from one protein molecule onto another by way of recognizing similarities. Such similarities are obtained at different levels, that of sequence, whole fold, or important substructures. Comparison of binding sites is important to understand functional similarities among the proteins and also to understand drug cross-reactivities. Current methods in literature have their own merits and demerits, warranting exploration of newer concepts and algorithms, especially for large-scale comparisons and for obtaining accurate residue-wise mappings. Here, we report the development of a new algorithm, PocketAlign, for obtaining structural superpositions of binding sites. The software is available as a web-service at http://proline.physicslisc.emetin/pocketalign/. The algorithm encodes shape descriptors in the form of geometric perspectives, supplemented by chemical group classification. The shape descriptor considers several perspectives with each residue as the focus and captures relative distribution of residues around it in a given site. Residue-wise pairings are computed by comparing the set of perspectives of the first site with that of the second, followed by a greedy approach that incrementally combines residue pairings into a mapping. The mappings in different frames are then evaluated by different metrics encoding the extent of alignment of individual geometric perspectives. Different initial seed alignments are computed, each subsequently extended by detecting consequential atomic alignments in a three-dimensional grid, and the best 500 stored in a database. Alignments are then ranked, and the top scoring alignments reported, which are then streamed into Pymol for visualization and analyses. The method is validated for accuracy and sensitivity and benchmarked against existing methods. An advantage of PocketAlign, as compared to some of the existing tools available for binding site comparison in literature, is that it explores different schemes for identifying an alignment thus has a better potential to capture similarities in ligand recognition abilities. PocketAlign, by finding a detailed alignment of a pair of sites, provides insights as to why two sites are similar and which set of residues and atoms contribute to the similarity.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E11 and E21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5 -10 meV below the E21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E21 transition. The PL intensity of all the three transitions E11, FES and E21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E11 and E21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
Acid degradation of 3D zinc phosphates primarily yields a one-dimensional ladder compound, an observation that is significant considering that the latter forms 3D structures on heating in water.
Resumo:
We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG) using a minimal model which supports quadratic band touching points. We show that a one dimensional (1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads to the generation of zero-energy anisotropic massless Dirac fermions and finite energy Dirac points with tunable velocities. The electric field superlattice maps onto a coupled chain model comprised of ``topological'' edge modes. 2D superlattice modulations are shown to lead to gaps on the mini-Brillouin zone boundary but do not, for certain symmetries, gap out the quadratic band touching point. Such potential variations, induced by impurities and rippling in biased BLG, could lead to subgap modes which are argued to be relevant to understanding transport measurements.
Resumo:
In the present study, KBiO(3) is synthesized by a standard oxidation technique while LiBiO(3) is prepared by hydrothermal method. The synthesized catalysts are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), BET surface area analysis and Diffuse Reflectance Spectroscopy (DRS). The XRD patterns suggest that KBiO(3) crystallizes in the cubic structure while LiBiO(3) crystallizes in orthorhombic structure and both of these adopt the tunnel structure. The SEM images reveal micron size polyhedral shaped KBiO(3) particles and rod-like or prismatic shape particles for LiBiO(3). The band gap is calculated from the diffuse reflectance spectrum and is found to be 2.1 eV and 1.8 eV for KBiO(3) and LiBiO(3), respectively. The band gap and the crystal structure data suggest that these materials can be used as photocatalysts. The photocatalytic activity of KBiO(3) and LiBiO(3) are evaluated for the degradation of anionic and cationic dyes, respectively, under UV and solar radiations.
Resumo:
Analysis of the serpentine folded-waveguide slow-wave structure was carried out using elliptical conformal transformation, for the dispersion and interaction impedance characteristics of the structure. The results obtained from the present analysis were compared with those from 3D electromagnetic simulation using MAFIA.