264 resultados para Nanostructured Materials
Resumo:
Balanced white light emitting systems are important for applications in electronic devices. Of all types of white light emitting materials, gels have the special advantage of easy processability. Here we report two white light emitting gels, which are based on lanthanide cholate self-assembly. The components are commercially available and the gels are prepared by simply sonicating their aqueous solutions (1-3min), unlike any other known white light emitting systems. Their CIE co-ordinates, calculated from the luminescence data, fall in the white light range with a correlated color temperature of ca. 5600 K.
Resumo:
Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i. e., BO33-), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.
Resumo:
Luminescent organic materials have attracted significant attention in recent times owing to their opportunities in various functional applications. Interestingly, unlike fluorescence, opportunities hidden within the phosphorescence properties of organic compounds have received considerably less attention even until last few years. It is only in the second decade of the 21st century, within a time span of less than last 5 years, that the concepts and prospects of organic compounds as phosphorescent materials have evolved rapidly. The previously perceived limitations of organic compounds as phosphorescent materials have been overcome and several molecules have been designed using old and new concepts, such as heavy atom effects, matrix assisted isolation, hydrogen bonding and halogen bonding, thereby gaining access to a significant number of materials with efficient phosphorescent features. In addition, significant improvements have been made in the development of RTP (room temperature phosphorescent) materials, which can be used under ambient conditions. In this review, we bring together the vastly different approaches developed by various researchers to understand and appreciate this recent revolution in organic luminescent materials.
Resumo:
Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil `sheetings'). This study investigated whether the soil physical and chemical properties of these constructions are constant or if they vary depending on the type of food they cover. Soil samples and soil sheetings were collected in a forest in India, from leaves on the ground (LEAF), fallen branches (WOOD), and vertical soil sheetings covering the bark of trees (TREE). In this environment, termite diversity was dominated by Odontotermes species, and especially Odontotermes feae and Odontotermes obesus. However, there was no clear niche differentiation and, for example, O. feae termites were found on all the materials. Compared with the putative parent soil (control), TREE sheetings showed the greatest (and most significant) differences (higher clay content and smaller clay particle sizes, lower C and N content and smaller delta C-13 and delta N-15), while LEAF sheetings were the least modified, though still significantly different than the control soil. We suggest that the termite diversity is a less important driver of potential soil modification than sheeting diversity. Further, there is evidence that construction properties are adapted to their prospective life-span, with relatively long-lasting structures being most different from the parent soil. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
In this study, fluoranthene-based derivatives with a high thermal stability were synthesized for applications in organic electroluminescent devices. The two derivatives synthesized in this study, bis(4-(7,9,10-triphenylfluoranthen-8-yl)phenyl)sulfane (TPFDPS) and 2,8-bis(7,9,10-triphenylfluoranthen-8-yl)dibenzob,d]thiophene (TPFDBT), were characterized by cyclic voltammetry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TPFDPS exhibits a high T-g of 210 degrees C while TPFDBT is crystalline in nature. Both the derivatives are thermally stable up to 500 degrees C. The charge transport studies reveal predominant electron transport properties. Subsequently, we fabricated blue OLEDs with 2-tert-butyl-9,10-bis-(beta-naphthyl)-anthracene (TBADN) as the emitting layer to demonstrate the applications of these molecules as an electron transporting layer.
Resumo:
Methane, the primary constituent of natural gas, binds too weakly to nanostructured carbons to meet the targets set for on-board vehicular storage to be viable. We show, using density functional theory calculations, that replacing graphene by graphene oxide increases the adsorption energy of methane by 50%. This enhancement is sufficient to achieve the optimal binding strength. In order to gain insight into the sources of this increased binding, that could also be used to formulate design principles for novel storage materials, we consider a sequence of model systems that progressively take us from graphene to graphene oxide. A careful analysis of the various contributions to the weak binding between the methane molecule and the graphene oxide shows that the enhancement has important contributions from London dispersion interactions as well as electrostatic interactions such as Debye interactions, aided by geometric curvature induced primarily by the presence of epoxy groups. (C) 2015 AIP Publishing LLC.
Resumo:
Herein we report the synthesis, characterization, and potential application of his (4- (7,9,10-triphenylfluoranthen-8-yl)pheny)sulfone (TPFDPSO2) and 2,8-bis (7,9,10-triphenylfluoranthen-8-yl) dibenzo b, d]-thiophene 5,5-dioxide (TPFDBTO2) as electron transport as well as light-emitting materials. These fluoranthene derivatives were synthesized by oxidation of their corresponding parent sulfide compounds, which were prepared via Diels-Alder reaction. These materials exhibit deep blue fluorescence emission in both solution and thin film, high photoluminescence quantum yield (PLQY), thermal and electrochemical stability over a wide potential range. Hole- and electron-only devices were fabricated to study the charge transport characteristics, and predominant electron transport property comparable with that of a well-known electron transport material, Alq(3), was observed. Furthermore, bilayer electroluminescent devices were fabricated utilizing these fluoranthene derivatives as electron transport as well as emitting layer, and device performance was compared with that of their parent sulfide molecules. The electroluminescence (EL) devices fabricated with these molecules displayed bright sky blue color emission and 5-fold improvement in external quantum efficiency (EQE) with respect to their parent compounds.
Resumo:
Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.
Resumo:
The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8% surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications. (C) 2015 Author(s).
Resumo:
A mutually miscible homopolymer (here polymethyl methacrylate; PMMA) was employed to tailor the interfacial properties of immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiation, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefer PC over SAN which though enhance the electrical conductivity of the blends, they don't improve the interfacial properties and results in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance the mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in the migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced, manifesting the improved dispersion of the MWNTs. The state of dispersion of the MWNTs and the phase morphology were assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in the X and K-u-band frequencies. The blends with PMMA wrapped MWNTs manifested a -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.
Resumo:
Tetrahedrites are natural earth-abundant minerals consisting of environmentally-friendly elements of copper and sulphur. Recently, research has been focused on the natural and synthetic minerals of tetrahedrite materials for thermoelectric applications. The thermoelectric figure of merit zT of around unity at similar to 723 K for many doped and natural tetrahedrite materials in the past 2-3 years was determined and this value is comparable to conventional p-type TE materials. In this review, a brief history of tetrahedrite materials is followed by information about its crystal structure and chemical bonding, electronic band structure and transport properties. Different synthesis approaches have been summarized. Also, this review outlines the effect of different doping elements on the thermoelectric properties of tetrahedrite materials, and the natural mineral tetrahedrite that can be used as thermoelectric materials.
Resumo:
In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.
Designing Novel Sulphate-based Ceramic Materials as Insertion Host Compounds for Secondary Batteries
Resumo:
Rechargeable batteries have propelled the wireless revolution and automobiles market over the past 25 years. Developing better batteries with improved energy density demands unveiling of new cathode ceramic materials with suitable diffusion channels and open framework structure. In this pursuit of achieving higher energy density, one approach is to realize enhanced redox voltage of insertion of ceramic compounds. This can be accomplished by incorporating highly electronegative anions in the cathode ceramics. Building on this idea, recently various sulphate- based compounds have been reported as high voltage cathode materials. The current article highlights the use of sulphate (SO4) based cathodes to realize the highest ever Fe3+/Fe2+ redox potentials in Li-ion batteries (LiFeSO4F fluorosulphate: 3.9V vs Li/Li+) and Na-ion batteries (Na2Fe2(SO4)(3) polysulphate: 3.8V vs Na/Na+). These sulphate-based cathode ceramic compounds pave way for newer avenues to design better batteries for future applications.
Resumo:
In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.
Resumo:
In the present study, a microwave-assisted, solution-based route has been employed to obtain porous CoO nano structures. Detailed characterization reveals that the flower-like nanostructures comprise petal-like sheets, each of which is made of an ordered, porous arrangement of crystallites of CoO measuring about 6 nm. TEM analysis shows that each ``petal'' is an oriented aggregate of CoO nanocrystals, such aggregation promoted by the hydroxyl moieties derived from the solution. The structure provides a large specific area as well as the porosity desirable in electrodes in Li-ion batteries. Electrochemical measurements carried out on electrodes made of nanostructured CoO show excellent Li ion-storing capability. A specific capacitance of 779 mAh g(-1) has been measured at a specific current of 100 mA g(-1). Measurements show also excellent cyclability and coulombic efficiency. Impedance spectroscopy provides evidence for charge transfer occurring in the porous networks. (C) 2015 Elsevier B.V. All rights reserved.