486 resultados para NMR Magnetism Resonance Larmour Precession
Resumo:
We report the first electron paramagnetic resonance studies of single crystals and powders of Pr0.6Ca0.4MnO3 in the 300-4.2 K range, covering the charge-ordering transition (Tco) at ~240 K and antiferromagnetic transition (TN) at ~170 K. The asymmetry parameter for the Dysonian single-crystal spectra shows an anomalous increase at Tco. Below Tco the g-value increases continuously, suggesting a gradual strengthening of the orbital ordering. The linewidth undergoes a sudden increase at Tco and continues to increase down to TN. The intensity increases as the temperature is decreased until Tco is reached, due to the renormalization of the magnetic susceptibility arising from the build-up of ferromagnetic correlations.
Resumo:
Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.
Resumo:
The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.
Resumo:
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
A new thiosemicarbazone, HL is synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide and structurally and spectrochemically characterized. H-1 NMR, C-13 NMR, COSY, HMQC and IR spectra of the compound are studied and the proton magnetic resonance spectrum reveals some unprecedented observations. The thione form is predominant in the solid state, as supported by the crystal structure and IR data, while a thiol-thione equilibrium is proposed in the solution state by NMR studies. The compound crystallizes into a monoclinic lattice with space group C2/c and the ZE conformation is exhibited by the thiosemicarbazone. Intra- and intermolecular hydrogen-bonding interactions give rise to a two-dimensional packing in the crystal lattice
Resumo:
A pulsed field gradient spin echo NMR spectrometer has been assembled by interfacing a programmable pulse generator and a data acquisition system designed and fabricated in our laboratory with other imported units. Calibration results of the magnetic field gradients are presented.
Resumo:
A contactless method to determine the electrical conductivity of nanoparticles is presented. It is based on the lineshape analysis of electron magnetic resonance signals which are `Dysonian' for conducting samples of sizes larger than the skin depth. The method is validated bymeasurements on a bulk sample of La0.67Sr0.33MnO3 where it gives values close to those obtained from direct measurement of conductivity and is then used to determine the conductivity of nanoparticles of La0.67Sr0.33MnO3 dispersed in polyvinyl alcohol as a function of temperature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Single crystal E.P.R. studies of copper as a dopant in lithium potassium sulphate, lithium ammonium sulphate and lithium sodium sulphate have been carried out from room temperature down to 77K. The three Jahn-Teller (JT) systems behave very similarly to one another. The room temperature dynamic JT spectra with giso = 2·19 ± 0·01 and Aiso = ±(33 ± 4) times 10-4 cm-1 transform around 247 K to spectra characterized by randomly frozen-in axial strains with g‖ = 2·4307 ± 0·0005, g⊥ = 2·083 ± 0·001, A‖ = ±(116 ± 2) times 10-4 cm-1 and A⊥ = ∓(14 ± 4) times 10-4 cm-1. We proposed that the low temperature phase (below 247 K) of each of these systems provides an example of a Jahn-Teller glass.
Resumo:
The 31P nmr spectra of 2,4- and 2,6-diamino-derivatives of octachlorocyclotetraphosphazatetraene, N4P4Cl6(NR1R2)2 (R1 = H, R2 = But; R1 = H, R2 = CH2Ph; R1 = Me, R2 = Ph), have been measured. The 2,4- and 2,6-isomers were analysed as AA'BB' and A2B2 spin systems respectively. In the 2,4-isomers the spin-spin couplings 2J(PNP) and 4J(PNPNP) were of opposite sign.
Resumo:
A new thiosemicarbazone, HL is synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide and structurally and spectrochemically characterized. H-1 NMR, C-13 NMR, COSY, HMQC and IR spectra of the compound are studied and the proton magnetic resonance spectrum reveals some unprecedented observations. The thione form is predominant in the solid state, as supported by the crystal structure and IR data, while a thiol-thione equilibrium is proposed in the solution state by NMR studies. The compound crystallizes into a monoclinic lattice with space group C2/c and the ZE conformation is exhibited by the thiosemicarbazone. Intra- and intermolecular hydrogen-bonding interactions give rise to a two-dimensional packing in the crystal lattice. (c) 2005 Elsevier B.V. All rights reserved.