289 resultados para Mycobacterium kansasii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructural functions of the electron-dense glycopeptidolipid-containing outermost layer (OL), the arabinogalactan-mycolic acid-containing electron-transparent layer (ETL), and the electron-dense peptidoglycan layer (PGL) of the mycobacterial cell wall in septal growth and constriction are not clear. Therefore, using transmission electron microscopy, we studied the participation of the three layers in septal growth and constriction in the fast-growing saprophytic species Mycobacterium smegmatis and the slow-growing pathogenic species Mycobacterium xenopi and Mycobacterium tuberculosis in order to document the processes in a comprehensive and comparative manner and to find out whether the processes are conserved across different mycobacterial species. A complete septal partition is formed first by the fresh synthesis of the septal PGL (S-PGL) and septal ETL (S-ETL) from the envelope PGL (E-PGL) in M. smegmatis and M. xenopi. The S-ETL is not continuous with the envelope ETL (E-ETL) due to the presence of the E-PGL between them. The E-PGL disappears, and the S-ETL becomes continuous with the E-ETL, when the OL begins to grow and invaginate into the S-ETL for constriction. However, in M. tuberculosis, the S-PGL and S-ETL grow from the E-PGL and E-ETL, respectively, without a separation between the E-ETL and S-ETL by the E-PGL, in contrast to the process in M. smegmatis and M. xenopi. Subsequent growth and invagination of the OL into the S-ETL of the septal partition initiates and completes septal constriction in M. tuberculosis. A model for the conserved sequential process of mycobacterial septation, in which the formation of a complete septal partition is followed by constriction, is presented. The probable physiological significance of the process is discussed. The ultrastructural features of septation and constriction in mycobacteria are unusually different from those in the well-studied organisms Escherichia coli and Bacillus subtilis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages, as sentinels of robust host immunity, are key regulators of innate immune responses against invading mycobacteria; however, pathogenic mycobacteria survive in the infected host by subverting host innate immunity. Infection dependent expression of early secreted antigenic target protein 6 (ESAT-6) by Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. As a part of multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) may act as an important influencing factor towards effective host immunity. In the current investigation, we demonstrate that ESAT-6 triggers COX-2 expression both in vitro and in vivo in a TLR2 dependent manner. Signaling perturbation data suggest that signaling dynamics of PI3K and p38 and JNK1/2 MAPK assume critical importance in ESAT-6 triggered expression of COX-2 in macrophages. Interestingly, ESAT-6 triggered PI3K-MAPK signaling axis holds the capacity to regulate coordinated activation of NF-kappa B and AP-1. Overall, current investigation provides mechanistic insights into ESAT-6 induced COX-2 expression and unravels TLR2 mediated interplay of PI3K and MAPK signaling axis as a rate-determining step during intricate host immune responses. These findings would serve as a paradigm to understand pathogenesis of mycobacterial infection and clearly pave a way towards development of novel therapeutics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure. (c) 2012 IUBMB IUBMB Life, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of (2-aminothiazol-4-yl)methylester (5a-t) derivatives were synthesized in good yields and characterized by H-1 NMR, C-13 NMR, mass spectral and elemental analyses. The crystal structure of 5a was evidenced by X-ray diffraction study. The compounds were evaluated for their preliminary in vitro antibacterial, antifungal activity and were screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain. The synthesized compounds displayed interesting antimicrobial activity. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C-26-C-34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intracellular immunity, such as lysosome and inflammasome, mostly by forming a protective vacuole-bound niche derived from the host itself. Some of the most dreadful diseases are caused by these vacuolar pathogens, for example, tuberculosis by Mycobacterium or typhoid fever by Salmonella. To deal with such successful pathogens therapeutically, the knowledge of a host-pathogen interaction system becomes primarily essential, which further depends on the use of a model system. A well characterized pathogen, namely Salmonella, suits the role of a model for this purpose, which can infect a wide array of hosts causing a variety of diseases. This review focuses on various such aspects of research on Salmonella which are useful for studying the pathogenesis of other intracellular pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discrepancy between the X-ray and NMR structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase in relation to the functionally important plasticity of the molecule led to molecular dynamics simulations. The X-ray and the NMR studies along with the simulations indicated an inverse correlation between crowding and molecular volume. A detailed comparison of proteins for which X-ray and the NMR structures appears to confirm this correlation. In consonance with the reported results of the investigations in cellular compartments and aqueous solution, the comparison indicates that the crowding results in compaction of the molecule as well as change in its shape, which could specifically involve regions of the molecule important in function. Crowding could thus influence the action of proteins through modulation of the functionally important plasticity of the molecule. Selvaraj M, Ahmad R, Varshney U and Vijayan M 2012 Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J. Biosci. 37 953-963] DOI 10.1007/s12038-012-9276-5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Methodology/Principal Findings: Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Conclusions/Significance: Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FadD32, a fatty acyl-AMP ligase (FAAL32) involved in the biosynthesis of mycolic acids, major and specific lipid components of the mycobacterial cell envelope, is essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein catalyzes the conversion of fatty acid to acyl-adenylate (acyl-AMP) in the presence of adenosine triphosphate and is conserved in all the mycobacterial species sequenced so far, thus representing a promising target for the development of novel antituberculous drugs. Here, we describe the optimization of the protein purification procedure and the development of a high-throughput screening assay for FadD32 activity. This spectrophotometric assay measuring the release of inorganic phosphate was optimized using the Mycobacterium smegmatis FadD32 as a surrogate enzyme. We describe the use of Tm (melting temperature) shift assay, which measures the modulation of FadD32 thermal stability, as a tool for the identification of potential ligands and for validation of compounds as inhibitors. Screening of a selected library of compounds led to the identification of five novel classes of inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guerin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.