370 resultados para Heat waves
Resumo:
The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.
Resumo:
Starting from the time-dependent Ginzburg-Landau equations for a type II superconductor, we derive the equations of motion for the displacement field of a moving vortex lattice ignoring pinning and inertia. We show that it is linearly stable and, surprisingly, that it supports wavelike long-wavelength excitations arising not from inertia or elasticity but from the strain-dependent mobility of the moving lattice. It should be possible to image these waves, whose speeds are a few mu m/s, using fast scanning tunneling microscopy.
Resumo:
The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.
Resumo:
Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A systematic procedure is outlined for scaling analysis of momentum and heat transfer in gas tungsten arc weld pools. With suitable selections of non-dimentionalised parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them is analysed accordingly. The analysis is then used to predict the orders of magnitude of some important quantities, such as the velocity scene lit the top surface, velocity boundary layer thickness, maximum temperature increase in the pool, and time required for initiation of melting. Some of the quantities predicted from the scaling analysis can also be used for optimised selection of appropriate grid size and time steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with numerical results quoted in the literature, and a good qualitative agreement is observed.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
In this paper, we outline a systematic procedure for scaling analysis of momentum and heat transfer in laser melted pools. With suitable choices of non-dimensionalising parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them are accordingly analysed. The analysis is then utilised to predict the orders of magnitude of some important quantities, such as the velocity scale at the top surface, velocity boundary layer thickness, maximum temperature rise in the pool, fully developed pool-depth, and time required for initiation of melting. Using the scaling predictions, the influence of various processing parameters on the system variables can be well recognised, which enables us to develop a deeper insight into the physical problem of interest. Moreover, some of the quantities predicted from the scaling analysis can be utilised for optimised selection of appropriate grid-size and time-steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with experimental and numerical results quoted in the literature, and an excellent qualitative agreement is observed.
Resumo:
A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.
Resumo:
The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.
Resumo:
An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.