392 resultados para Group Ring
Resumo:
Herein we present a simple and highly efficient method for the synthesis of beta and gamma-amino thiols via regioselective ring opening of sulfamidates with tetrathiomolybdate 1. The generality of this methodology has been shown by synthesizing carbohydrate derived beta-amino thiol. The scope and versatility of this methodology has been demonstrated by synthesizing biologically important unnatural amino acids like isocysteines in optically pure form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider a one-dimensional Hubbard model in the presence of disorder. We compute the charge stiffness for a mesoscopic ring as a function of the size L, which is a measure of the persistent currents. We find that for finite disorder the persistent currents of the system with repulsive interactions are larger than those of the system with attractive interactions. This counterintuitive result is due to the fact that local-density fluctuations are reduced in the presence of repulsive interactions.
Resumo:
The 1H and 13C NMR spectra of N-(2-pyridinyl)-, N-(4-methyl2-pyridinyl)-, and N-(6-methyl-2-pyridinyl)-3-pyridine-carboxamides (1�3, respectively) and 3-pyridinecarboxamide (4) in different solvents have been analysed using COSY, HETCOR, chemical shift and coupling constant correlations. The conformations of 1�4 have been obtained by utilizing the NMR spectra, NOE experiments and MINDO/3 calculations. In dilute solutions, the 2-pyridyl ring is coplanar with the amide group while the 3-pyridyl ring is apparently not. Compounds 1�3 dimerize through cooperative hydrogen bonding in concentrated CDCl3 solution (approximately 0.1 M) and the structure of the dimer resembles some of the DNA base-pairs. Hydrogen bonding between N---H and the solvent molecules hinders dimerization in (CD3)2CO and CD3CN.
Resumo:
Model studies, starting from the monoterpene R-carvone, directed towards the synthesis of chiral A-ring derivatives of taxanes with oxygen functionalities at C-2, 9 and 13 carbon atoms as in taxol is described.
Resumo:
The H-1 NMR spectra of N-(4-methylphenyl)-2-pyridinecarboxamide and N-(4-methyl-phenyl)-3-pyridine carboxamide in CDCl3 and (CD3)(2)CO have been analysed with the help of the COSY spectra. Accurate H-1 chemical shifts and coupling constants have been obtained from the simulated spectra. From H-1 NMR and Nuclear Overhauser Enhancement (NOE) measurements the molecular conformations are inferred. The pyridyl ring is apparently coplanar with the amide group while the 3-pyridyl ring is nearly perpendicular to the amide plane so that the amide proton is nearer to the 2-pyridyl proton H2 than to H4. The orientation of the 4-methylphenyl group could not be determined.
Resumo:
Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.
Resumo:
A new class of photo-crosslinkable flame retardant arylphosphate ester polymers based on diarylidenecycloalkanone groups has been synthesized by polymerizing 2,5-divanillylidene cyclopentanone and 2,6-divanillylidenecyclohexanone with various arylphosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The resulting polymers were characterized by inherent viscosity, g.p.c., i.r., H-1, C-13, P-31 n.m.r. spectroscopy. These polymers were studied for their photochemical and flame retardant properties. The divanillylidene cycloalkanone group in the chain function as photoactive centres while arylphosphate ester groups impart flame retardancy. The photo-crosslinking proceeds via 2 pi + 2 pi cycloaddition reaction of the divanillylidene cycloalkanone moieties. The crosslinking rate, thermal stability and flammability characteristics of the polymers increase with decrease in the size of the cycloalkanone ring. (C) 1997 Elsevier Science Ltd.
Resumo:
We present the report of the B physics working group of the Workshop on High Energy Physics Phenomenology (WHEPP-XI), held at the Physical Research Laboratory, Ahmedabad, in January 2010.
Resumo:
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH2CH2OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e. g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH2)(12)-spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH2)(3)-spacer, HG-3, which on gene transfection in the presence of 10% FBS lost similar to 70% of its transfection efficiency. Overall the gemini lipid with a -(CH2)(5)-spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e. g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 mu g DNA per well, HG-5 is better than Lipofectamine 2000.
Resumo:
In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Let K be a field of characteristic zero and let m(0),..., m(e-1) be a sequence of positive integers. Let C be an algebroid monomial curve in the affine e-space A(K)(e) defined parametrically by X-0 = T-m0,..., Xe-1 = Tme-1 and let A be the coordinate ring of C. In this paper, we assume that some e - 1 terms of m(0),..., m(e-1) form an arithmetic sequence and construct a minimal set of generators for the derivation module Der(K)(A) of A and write an explicit formula for mu (Der(K)(A)).
Resumo:
Triplet lifetimes have been determined for the diastereomers of a broad set of butane-l,4-dione derivatives (1-3). A remarkable dependence of lifetimes on conformational preferences is revealed in that the lifetimes are shorter for the meso diastereomers of 1-3 than those for the racemic ones. The intramolecular beta-phenyl quenching is promoted in the case of meso diastereomers by virtue of the gauche relationship between the excited carbonyl group and the beta-aryl ring, while a distal arrangement in the lowest energy conformation (H-anti) in racemic diastereomers prevents such a deactivation. The involvement of charge transfer in the intramolecular beta-phenyl quenching is suggested by the correlation of the triplet lifetimes of the meso diastereomers of compounds 2 with the nature of the substituent on the beta-phenyl rings. In the case of racemic diastereomers, beta-methoxy substitution on the beta-phenyl ring (2-OCH3, 3-OCH3) also led to a decrease of the triplet lifetimes when compared to those of the nonsubstituted compounds (2-H, 3-H). This shortening is accounted for by the deactivation of a small proportion of the excited molecules through beta-phenyl quenching. In addition to the above factors, the lifetimes in the case of meso diastereomers can further be controlled by increasing the energy spacing between the T-1 and T-2 states, since beta-phenyl quenching occurs from the latter for compounds 2 and 3. Through a rational conformational control, a surprisingly long triplet lifetime (300 ns) has been measured for the first time for a purely n,pi* triplet-excited beta-phenylpropiophenone dimer (1-rac).
Resumo:
The title compound, C17H19N3O7. 2H(2)O, has C2'-endo, C3'-exo puckering, The orientation of the base with respect to the sugar is anti and the geometry about C4'-C5' is gauche,trans. The angle between the cytidine base and the phenyl ring of the anisoyl group is 15.5(2)degrees.
Resumo:
The title compound, C18H19N5O6. H2O, has a syn conformation about the glycosidic bond. Its furanose ring shows a C2'-endo-C3'-exo twist conformation and trans-gauche geometry about the C4'-C5' bond. The angle between the adenine base and the phenyl ring of the anisoyl group is 22.9 degrees. Adenine and anisoyl groups stack along the b axis at a separation of 3.4 Angstrom.
Resumo:
Mesogens containing four rings in the main core can accommodate one terminal and two nearby lateral chains on each outside aromatic ring. These compounds containing six chains present an enantiotropic nematic range which is influenced by the rigidity of the links. The conformational behaviour of the first methyleneoxy group within the chains was investigated by one and two dimensional C-13 NMR. The sign of the jump in chemical shifts when entering the nematic phase indicates the folding of each lateral branch. Dipolar oscillations during cross-polarization contact provide the values of the bond order parameter. The two First lateral fragments do not behave in the same way, demonstrating the influence of the fragment along which the chain is back: folded.