265 resultados para Glasses In


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simplified structural model to study the ionic transport in silver based glasses has been formulated. The diffusion of silver ion under the influence of coulombic interactions of mobile cation and anions has been studied. Monte Carlo simulations of silver ion hopping in glass have suggested two different kinds of population of silver ions. We discuss the results of variation in diffusion constant with dopant (AgI) concentration using the diffusion path model. (C) 1997 Elsevier-Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses of various compositions in the system (100 - x)Li-2 B-4 O-7 - x (SrO-Bi2O3-Nb2O5) (10 less than or equal to x less than or equal to 60) (in molar ratio) were prepared via a conventional melt-quenching technique. The glassy nature of the as-quenched samples was established by Differential Thermal Analyses (DTA). X-ray powder diffraction (XRD) and Transmission Electron Microscopic (TEM) studies confirmed the amorphous nature of the as quenched and crystallinity in the heat-treated samples. The formation of nanocrystalline layered perovskite SrBi2Nb2O9 (SBN) phase, in the samples heat-treated at temperatures higher than 550degreesC, through an intermediate fluorite phase in the LBO glass matrix was confirmed by both the XRD and High Resolution Transmission Electron Microscopy (HRTEM). The samples that were heat-treated at two different temperatures, 550 and 625degreesC, (containing 0.35 and 0.47 mum sized SBN crystallites) exhibited broad dielectric anomalies in the vicinity of ferroelectric to paraelectric transition temperature of the parent SBN ceramics. A downward shift in the phase transition temperature was observed with decreasing crystallite size of SBN. The observation of pyroelectric and ferroelectric properties for the present samples confirmed their polar nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present insightful results on the kinetics of photodarkening (PD) in Ge(x)As(45-x)Se(55) glasses at the ambient and liquid helium temperatures when the network rigidity is increased by varying x from 0 to 16. We observe a many fold change in PD and its kinetics with decreasing network flexibility and temperature. Moreover, temporal evolution of PD shows a dramatic change with increasing x. (C)2011 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on the switching behaviour of arsenic-tellurium glasses with Ge or Al additives, yield interesting information about the dependence of switching on network rigidity, co-ordination of the constituents, glass transition & ambient temperature and glass forming ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photo-thermal Deflection (PTD) technique is used to investigate the thermal diffusivity (alpha) of Ge17Te83 - xTlx (0 <= x <= 13) glasses as a function of composition. The thermal diffusivity of these glasses is found to lie in the range 0.020 to 0.048 cm(2)/s, which is consistent with the memory type of electrical switching exhibited by these samples. Further, it is found that alpha shows an initial increase with Tl addition, followed by a decrease. The observed composition dependence of thermal diffusivity has been understood on the basis that the thallium atoms are incorporated as a covalent species for lower values of x, increasing the network rigidity; however, they enter as ionic species for higher x values, fragmenting the network. The initial increase in a is due to the increasing network rigidity and the subsequent decrease is because of the fragmentation of the network. Also, there is a strong correlation between the composition dependence of switching voltages observed earlier and the variation with composition of electrical resistivity and thermal diffusivity of Ge17Te83 - xTlx glasses obtained in the present study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, we present the interesting results of photodarkening (PD), transition toward photostability, and a slow crossover from PD to photobleaching when composition of the chalcogenide glassy thin film changes from Ge-deficient to rich. A subsequent Raman analysis on these as-prepared and irradiated samples provide the direct evidence of photoinduced structural rearrangement, i.e., photocrystallization of Se and the removal of edge-sharing GeSe4 tetrahedra. Further, our experimental results clearly demonstrate that light-induced effects can be effectively controlled by choosing the right composition and provide valuable information on synthesizing photostable/sensitive glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anelastic and viscoplastic characteristics of Cu50Zr50 and Cu65Zr35 binary bulk metallic glasses at room temperature were examined through nanoindentation creep experiments. Results show that both the deformations are relatively more pronounced in Cu50Zr50 than in Cu65Zr35, and their amount increases with the loading rate. The results are analyzed in terms of the influences of structural defects and loading rate on the room temperature indentation creep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternating Differential Scanning Calorimetric (ADSC) studies on quaternary Ge15Te80-xIn5Agx glasses show the non-reversing enthalpy (Delta H-NR) at T-g to exhibit a broad global minimum in the 8% <= x <= 16% range of Ag, an observation that is taken evidence for existence of an Intermediate Phase (IP) in that range. Glasses at x < 8% are in the flexible phase while those at x > 16% in the stressed-rigid phase. The nature of crystalline phases formed upon crystallization of bulk glasses are elucidated by XRD studies, and reveal presence of Te, GeTe, Ag8GeTe6, AgTe, In2Te3 and In4Te3 phases. These experiments also reveal that the fraction of Ag- bearing phases increases while those of Te- bearing ones decreases with increasing x, suggesting progressive replacement of Te-Te bonds by Ag-Te bonds. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.