378 resultados para Friction gripper


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil phase, in an oil-in-water emulsion on a steel substrate, is strongly repelled by the substrate. The oil in this situation does not wet the steel and steel/steel friction is high. In this work we disperse anionic surfactants in an oil film and study the effect of this dispersion on the force of interaction between a silica colloid probe (AFM) carrying the oil film and a steel substrate in water. It is observed that when the surfactant is oil insoluble and the interaction time is short the strong entropic repulsion (without the surfactant) is replaced by a strong attraction. The steel on steel sliding friction in this case is low compared to that what is achieved when the surfactant is soluble in oil. The rationale underlying these interactions is explored here. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of phi with sigma(m). It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (F-gamma) increases continuously and (ii) the average ultimate uplift pressure (q(u)) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ExperimentS were conducted to find the effects of seepage on flow over a sand bed in a straight rectangular flume under two conditions: (1) When the channel bed is plane, horizontal, and nontransporting; and (2) when the bed is transporting at a constant sediment concentration. Effects of both injection and suction, caused by seepage flow into and out of the channel bed, are studied for condition 1; and only suction effects are studied for condition 2, Three sands, sizes 0.34 mm, 0.53 mm, and 0.80 mm, are used in the study. It is found that seepage can cause an increase or decrease in the bed shear stress relative to no seepage for the two conditions. The change in bed shear stress depends on the relative magnitudes of the bed shear stress and the critical shear stress of particles under the no-seepage condition, sediment concentration, and the seepage rate. Quantitative relationships giving the ratio of bed shear stresses with and without seepage are presented for both conditions of the bed. A procedure to estimate the changes in bed shear stress, friction factor, Manning's n, and stream power due to seepage for known initial conditions of the channel and the amount of applied seepage is presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of temperature-dependent viscosity and Prandtl number on the unsteady laminar nonsimilar forced convection flow over two-dimensional and axisymmetric bodies has been examined where the unsteadiness and (or) nonsimilarity are (is) due to the free stream velocity, mass transfer, and transverse curvature. The partial differential equations governing the flow which involve three independent variables have been solved numerically using an implicit finite-difference scheme along with a quasilinearization technique. It is found that both the skin friction and heat transfer strongly respond to the unsteady free stream velocity distributions. The unsteadiness and injection cause the location of zero skin friction to move upstream. However, the effect of variable viscosity and Prandtl number is to move it downstream. The heat transfer is found to depend strongly on viscous dissipation, but the skin friction is little affected by it. In general, the results pertaining to variable fluid properties differ significantly, from those of constant fluid properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of characteristics coupled with a log-spiral failure surface was used to develop a theory for vertical uplift capacity of shallow horizontal strip anchors in a general c-phi soil. Uplift-capacity factors F(c), F(q) and F(gamma), for the effects of cohesion, surcharge, and density, respectively, have been established as functions of embedment ratio lambda and angle of friction phi. The extent of the failure surface at the ground has also been determined. Comparisons made with existing test results support the predictive capability of the theory, and comparisons with the analysis proposed by Meyerhof and Adams show the proposed analysis provides slightly more conservative predictions of pullout capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and computer simulation studies of orientational relaxation in dense molecular liquids are presented. The emphasis of the study is to understand the effects of collective orientational relaxation on the single-particle orientational dynamics. The theoretical analysis is based on a recently developed molecular hydrodynamic theory which allows a self-consistent description of both the collective and the single-particle orientational relaxation. The molecular hydrodynamic theory can be used to derive a relation between the memory function for the collective orientational correlation function and the frequency-dependent dielectric function. A novel feature of the present work is the demonstration that this collective memory function is significantly different from the single-particle rotational friction. However, a microscopic expression for the single-particle rotational friction can be derived from the molecular hydrodynamic theory where the collective memory function can be used to obtain the single-particle orientational friction. This procedure allows, us to calculate the single-particle orientational correlation function near the alpha-beta transition in the supercooled liquid. The calculated correlation function shows an interesting bimodal decay below the bifurcation temperature as the glass transition is approached from above. Brownian dynamics simulations have been carried out to check the validity of the above procedure of translating the memory function from the dielectric relaxation data. We have also investigated the following two issues important in understanding the orientational relaxation in slow liquids. First, we present an analysis of the ''orientational caging'' of translational motion. The value of the translational friction is found to be altered significantly by the orientational caging. Second, we address the question of the rank dependence of the dielectric friction using both simulation and the molecular hydrodynamic theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding of alumina (87%) pins against a hardened steel disk over a range of pressures (3.3-30.0 MPa) and speeds (0.1-12.0 ms(-1)) has been studied. Four different regions (R1, R2, R3, and R4) of friction as a function of speed have been identified. R1 and RS exhibit single-valued friction while in R2 and R4 the friction exhibits dual behavior. The speed range over which these regions prevail is sensitive to the pressure. R1 and R2 are low-speed and low-temperature regions, and in both, metal transfer and formation and compaction of gamma-Fe2O3 occur. R3 and R4 are associated with high speeds and high interface temperatures. Formation of FeO, FeAl2O4, and FeAlO3 has been observed. The implications of the tribochemical interactions on friction and wear characteristics are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding tests were conducted, in air, of YTZP ceramic pins against steel discs at an applied pressure of 15.5 MPa over a speed range of 0.3 to 4.0 ms(-1). Pin wear was not detectable until 2.0 m s(-1), after which a finite but small wear rate was observed at 3.0 m s(-1), accompanied by a red glow at the contacting surface. A transition in wear behaviour and friction (mu) occurred at 4.0 ms(-1), increasing the former by over two orders of magnitude. Both mu and wear behaviour changed with time at 4.0 m s(-1). During initial periods mu was high and wear rate increased steadily with time accompanied by ceramic transfer onto the disc, which increased with time. When disc coverage exceeds a certain threshold value, mu decreased rapidly and the wear rate stabilized at a very high value. Metal transfer was not observed at any speed. High surface temperatures brought about significant adhesion between TZP and steel and this together with enhanced plastic deformation brought about a transition in wear behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially available 3Y-TZP and Mg-PSZ flats mere abraded by a 150 degrees diamond cone at -196 degrees, 25 degrees, 200 degrees, and 400 degrees C. The coefficient of friction, the track width, and the morphological features of the track were recorded. Raman spectroscopy mas used to record the tetragonal-to-monoclinic phase transformation (t --> m) as a function of distance away from the track. The study was undertaken to establish the influence of tangential traction on phase transformation and surface damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.