280 resultados para Entrepreneur characteristics
Resumo:
Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.
Resumo:
We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.
Resumo:
NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti: 45/55 aL.%). The rate of deposition and thickness of sputter deposited films were maintained to similar to 35 nm min(-1) and 4 mu m respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (110) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (100), (101), and (200) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO2) along with parent Austenite (110) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO2) layer on the surface of the films, in both the cases. The extent of the formation of surface oxide layer onto the surface of NiTi films has enhanced after chemical treatment. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coastal marine environments are important links between the continents and the open ocean. The coast off Mangalore forms part of the upwelling zone along the southeastern Arabian Sea. The temperature, salinity, density, dissolved oxygen and stable oxygen isotope ratio (delta O-18) of surface waters as well as those of bottom waters off coastal Mangalore were studied every month from October 2010 to May 2011. The coastal waters were stratified in October and November due to precipitation and runoff. The region was characterised by upwelled bottom waters in October, whereas the region exhibited a temperature inversion in November. The surface and bottom waters presented almost uniform properties from December until April. The coastal waters were observed to be most dense in January and May. Comparatively cold and poorly oxygenated bottom waters during the May sampling indicated the onset of upwelling along the region. delta O-18 of the coastal waters successfully documented the observed variations in the hydrographical characteristics of the Mangalore coast during the monthly sampling period. We also noted that the monthly variability in the properties of the coastal waters of Mangalore was related to the hydrographical characteristics of the adjacent open ocean inferred from satellite-derived surface winds, sea surface height anomaly data and sea surface temperatures.
Resumo:
The ever-increasing number of diseases worldwide requires comprehensive, efficient, and cost-effective modes of treatments. Among various strategies, nanomaterials fulfill most of these criteria. The unique physicochemical properties of nanoparticles have made them a premier choice as a drug or a drug delivery system for the purpose of treatment, and as bio-detectors for disease prognosis. However, the main challenge is the proper consideration of the physical properties of these nanomaterials, while developing them as potential tools for therapeutics and/or diagnostics. In this review, we focus mainly on the characteristics of nanoparticles to develop an effective and sensitive system for clinical purposes. This review will present an overview of the important properties of nanoparticles, through their journey from its route of administration until disposal from the human body after accomplishing targeted functionality. We have chosen cancer as our model disease to explain the potentiality of nano-systems for therapeutics and diagnostics in relation to several organs (intestine, lung, brain, etc.). Furthermore, we have discussed their biodegradability and accumulation probability which can cause unfavorable side effects in healthy human subjects.
Resumo:
We present broad-band pulsation and spectral characteristics of the accreting X-ray pulsar OAO 1657-415 with a 2.2 d long Suzaku observation carried out covering its orbital phase range similar to 0.12-0.34, with respect to the mid-eclipse. During the last third of the observation, the X-ray count rate in both the X-ray Imaging Spectrometer (XIS) and the HXD-PIN instruments increased by a factor of more than 10. During this observation, the hardness ratio also changed by a factor of more than 5, uncorrelated with the intensity variations. In two segments of the observation, lasting for similar to 30-50 ks, the hardness ratio is very high. In these segments, the spectrum shows a large absorption column density and correspondingly large equivalent widths of the iron fluorescence lines. We found no conclusive evidence for the presence of a cyclotron line in the broad-band X-ray spectrum with Suzaku. The pulse profile, especially in the XIS energy band, shows evolution with time but not so with energy. We discuss the nature of the intensity variations, and variations of the absorption column density and emission lines during the duration of the observation as would be expected due to a clumpy stellar wind of the supergiant companion star. These results indicate that OAO 1657-415 has characteristics intermediate to the normal supergiant systems and the systems that show fast X-ray transient phenomena.
Resumo:
Insulated gate bipolar transistors (IGBTs) are used in high-power voltage-source converters rated up to hundreds of kilowatts or even a few megawatts. Knowledge of device switching characteristics is required for reliable design and operation of the converters. Switching characteristics are studied widely at high current levels, and corresponding data are available in datasheets. But the devices in a converter also switch low currents close to the zero crossings of the line currents. Further, the switching behaviour under these conditions could significantly influence the output waveform quality including zero crossover distortion. Hence, the switching characteristics of high-current IGBTs (300-A and 75-A IGBT modules) at low load current magnitudes are investigated experimentally in this paper. The collector current, gate-emitter voltage and collector-emitter voltage are measured at various low values of current (less than 10% of the device rated current). A specially designed in-house constructed coaxial current transformer (CCT) is used for device current measurement without increasing the loop inductance in the power circuit. Experimental results show that the device voltage rise time increases significantly during turn-off transitions at low currents.
Resumo:
The paper deals with experimental investigations aiming at specifying optimum soil grading limits for the production of cement stabilised soil bricks (CSSB). Wide range of soil grading curves encompassing both fine and coarse grained soils were considered. Strength, durability and absorption characteristics of CSSB were examined considering 14 different types of soil grading curves and three cement contents. The investigations show that there is optimum clay content for the soil mix which yields maximum compressive strength for CSSB and the optimum clay content is about 10 and 14 % for fine grained and coarse grained soils respectively. Void ratio of the compacted specimens is the lowest at the optimum clay content and therefore possesses maximum strength at that point. CSSB using fine grained soils shows higher strength and better durability characteristics when compared to the bricks using coarse grained soils.
Resumo:
Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.
Resumo:
Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.
VIBRATIONAL CHARACTERISTICS OF ZIGZAG, ARMCHAIR AND CHIRAL CANTILEVER SINGLE-WALLED CARBON NANOTUBES
Resumo:
Finite element analysis has been performed to study vibrational characteristics of cantilever single walled carbon nanotubes. Finite element models are generated by specifying the C-C bond rigidities, which are estimated by equating energies from molecular mechanics and continuum mechanics. Bending, torsion, and axial modes are identified based on effective mass for armchair, zigzag and chiral cantilever single walled carbon nanotubes, whose Young's modulus is evaluated from the bending frequency. Empirical relations are provided for frequencies of bending, torsion, and axial modes.
Resumo:
In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.
Resumo:
Temperature dependent current-voltage (I-V) measurements of electrochemically prepared zinc oxide nanowire/polypyrrole (ZnONW/PPy) nanocomposite yielded non-linear I-V characteristics at temperatures between 300 and 4.5 K. The low-field conductance (G) of the ZnONW/PPy film exhibits pronounced temperature dependence with room temperature conductance (G(300K)) similar to 10(-3) S and a conductance ratio (G(300)K/G(4.5K)) of similar to 10(4), indicating dominance of significant temperature dependent charge transport processes. The conduction mechanism of the film is satisfactorily understood by extended fluctuation induced tunneling (FIT) model as the non-linear I-V characteristics fit fairly well to the extended FIT model. Further, the temperature dependence of G(o) obtained from fitting followed Sheng's model also. (C) 2014 AIP Publishing LLC.