262 resultados para EXCHANGE MOLECULAR-DYNAMICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the barbed end of actin is transmitted to the pointed end, where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engineering of electronic energy band structure in graphene based nanostructures has several potential applications. Substrate induced bandgap opening in graphene results several optoelectronic properties due to the inter-band transitions. Various defects like structures, including Stone-Walls and higher-order defects are observed when a graphene sheet is exfoliated from graphite and in many other growth conditions. Existence of defect in graphene based nanostructures may cause changes in optoelectronic properties. Defect engineered graphene on silicon system are considered in this paper to study the tunability of optoelectronic properties. Graphene on silicon atomic system is equilibrated using molecular dynamics simulation scheme. Based on this study, we confirm the existence of a stable super-lattice. Density functional calculations are employed to determine the energy band structure for the super-lattice. Increase in the optical energy bandgap is observed with increasing of order of the complexity in the defect structure. Optical conductivity is computed as a function of incident electromagnetic energy which is also increasing with increase in the defect order. Tunability in optoelectronic properties will be useful in understanding graphene based design of photodetectors, photodiodes and tunnelling transistors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current paper reports synthesis of chemical free graphene by unzipping of the carbon nanotubes (CNTs) using high strain rate deformation at 150K. A specially designed cryomill operating at 150 K was used for the experiments. The mechanism of unzipping was further explored using molecular dynamics (MD) simulations. Both experimental and simulation results reveal two modes of unzipping through radial and shear loading. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated. (C) 2015 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reversible transition of wurtzite to rock salt phase under pressure is well reported in literature. The cubic phase is unstable under ambient conditions both in the bulk and in nanoparticles. This paper reports defect-induced stabilization of cubic ZnO phase in sub 20 nm ZnO particles and explores their optical properties. The size reduction was achieved by ball milling in a specially designed mill which allows a control of the milling temperature. The process of synthesis involved both variation of milling temperature (including low temperature similar to 150 K) and impact pressure. We show that these have profound influence in the introduction of defects and stabilization of the cubic phase. A molecular dynamics simulation is presented to explain the observed results. The measured optical properties have further supported the observations of defect-induced stabilization of cubic ZnO and reduction in particle size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The poly (l-lysine)-based SPL7013 dendrimer with naphthalene disulphonate surface groups blocks the entry of HIV-1 into target cells and is in clinical trials for development as a topical microbicide. Its mechanism of action against R5 HIV-1, the HIV-1 variant implicated in transmission across individuals, remains poorly understood. Using docking and fully atomistic MD simulations, we find that SPL7013 binds tightly to R5 gp120 in the gp120-CD4 complex but weakly to gp120 alone. Further, the binding, although to multiple regions of gp120, does not occlude the CD4 binding site on gp120, suggesting that SPL7013 does not prevent the binding of R5 gp120 to CD4. Using MD simulations to compute binding energies of several docked structures, we find that SPL7013 binding to gp120 significantly weakens the gp120-CD4 complex. Finally, we use steered molecular dynamics (SMD) to study the kinetics of the dissociation of the gp120-CD4 complex in the absence of the dendrimer and with the dendrimer bound in each of the several stable configurations to gp120. We find that SPL7013 significantly lowers the force required to rupture the gp120-CD4 complex and accelerates its dissociation. Taken together, our findings suggest that SPL7013 compromises the stability of the R5 gp120-CD4 complex, potentially preventing the accrual of the requisite number of gp120-CD4 complexes across the virus-cell interface, thereby blocking virus entry.