257 resultados para ENZYME-KINETICS
Resumo:
Glyoxalase I which is synonymously known as lactoylglutathione lyase is a critical enzyme in methylglyoxal (MG) detoxification. We assessed the STM3117 encoded lactoylglutathione lyase (Lgl) of Salmonella Typhimurium, which is known to function as a virulence factor, due in part to its ability to detoxify methylglyoxal. We found that STM3117 encoded Lgl isomerises the hemithioacetal adduct of MG and glutathione (GSH) into S-lactoylglutathione. Lgl was observed to be an outer membrane bound protein with maximum expression at the exponential growth phase. The deletion mutant of S. Typhimurium (lgl) exhibited a notable growth inhibition coupled with oxidative DNA damage and membrane disruptions, in accordance with the growth arrest phenomenon associated with typical glyoxalase I deletion. However, growth in glucose minimal medium did not result in any inhibition. Endogenous expression of recombinant Lgl in serovar Typhi led to an increased resistance and growth in presence of external MG. Being a metalloprotein, Lgl was found to get activated maximally by Co2+ ion followed by Ni2+, while Zn2+ did not activate the enzyme and this could be attributed to the geometry of the particular protein-metal complex attained in the catalytically active state. Our results offer an insight on the pivotal role of the virulence associated and horizontally acquired STM3117 gene in non-typhoidal serovars with direct correlation of its activity in lending survival advantage to Salmonella spp.
Resumo:
We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm(2), however the kinetics remain rather different.
Resumo:
A plausible microkinetic model has been proposed for the CO oxidation reaction catalysed by palladium (Pd) with the kinetic parameters obtained from the literature. A robust rate expression using the reaction route analysis has been developed for the presented microkinetic scheme and the obtained rate expressions have been validated against the experimental data presented in the literature. A wide range of experimental conditions ranging from single Pd crystals under ultra-high vacuum conditions and impregnated Pd used for fixed bed experiments under atmospheric pressure has been used to validate the reaction mechanism. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.
Resumo:
The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640 1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
In this article, the SrFeO3-delta photocatalyst was synthesized by a solution combustion method and applied for the photocatalytic degradation of aqueous nitrobenzene in the presence and absence of H2O2. The SrFeO3-delta photocatalyst was characterized by XRD, FT-IR, FE-SEM, TEM, TG-DTG, XPS, and UV visible spectroscopy. The band gap energy of SrFeO3-delta was found to be 3.75 eV which lies in the UV region. The XPS results indicate that the oxidation state of Sr and Fe in SrFeO3-delta was 2+ and 3+, respectively, and the surface atomic ratio of Sr and Fe is 0.995. The photocatalytic activity reveals that the degradation of nitrobenzene over the SrFeO3-delta catalyst itself (UV/SFO) is superior compared to SrFeO3-delta in the presence of H2O2 (UV/SFO/H2O2) with a degradation efficiency of 99-96%. The degradation of nitrobenzene obeys first-order kinetics in both UV/SFO and UV/SFO/H2O2 processes. The decrease in degradation efficiency with UV/SFO/H2O2 was attributed due to the formation of strontium carbonate on the photocatalyst surface.
Resumo:
We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12 h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We provide a comprehensive physical description of the vaporization, self-assembly, agglomeration, and buckling kinetics of sessile nanofluid droplets pinned on a hydrophobic substrate. We have deciphered five distinct regimes of the droplet life cycle. Regimes I-III consists of evaporation-induced preferential agglomeration that leads to the formation of a unique dome-shaped inhomogeneous shell with a stratified varying-density liquid core. Regime IV involves capillary-pressure-initiated shell buckling and stress-induced shell rupture. Regime V marks rupture-induced cavity inception and growth. We demonstrate through scaling arguments that the growth of the cavity (which controls the final morphology or structure) can be described by a universal function.
Resumo:
Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra-and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response.
Resumo:
Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (beta/alpha)(8)-triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 degrees C to 75 degrees C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 degrees C to 68 degrees C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. Database The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively
Resumo:
Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.
Resumo:
Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.
Resumo:
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A modular, general method for trapping enzymes within the voids of paper, without chemical activation of cellulose, is reported. Glucose oxidase and peroxidase were crosslinked with poly(acrylic acid) via carbodiimide chemistry, producing 3-dimensional networks interlocked in cellulose fibers. Interlocking prevented enzyme activity loss and enhanced the washability and stability.
Resumo:
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.