304 resultados para Dynamic geometry
Resumo:
In this paper, we have proposed a centralized multicast authentication protocol (MAP) for dynamic multicast groups in wireless networks. In our protocol, a multicast group is defined only at the time of the multicasting. The authentication server (AS) in the network generates a session key and authenticates it to each of the members of a multicast group using the computationally inexpensive least common multiple (LCM) method. In addition, a pseudo random function (PRF) is used to bind the secret keys of the network members with their identities. By doing this, the AS is relieved from storing per member secrets in its memory, making the scheme completely storage scalable. The protocol minimizes the load on the network members by shifting the computational tasks towards the AS node as far as possible. The protocol possesses a membership revocation mechanism and is protected against replay attack and brute force attack. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
Stochastic modelling is a useful way of simulating complex hard-rock aquifers as hydrological properties (permeability, porosity etc.) can be described using random variables with known statistics. However, very few studies have assessed the influence of topological uncertainty (i.e. the variability of thickness of conductive zones in the aquifer), probably because it is not easy to retrieve accurate statistics of the aquifer geometry, especially in hard rock context. In this paper, we assessed the potential of using geophysical surveys to describe the geometry of a hard rock-aquifer in a stochastic modelling framework. The study site was a small experimental watershed in South India, where the aquifer consisted of a clayey to loamy-sandy zone (regolith) underlain by a conductive fissured rock layer (protolith) and the unweathered gneiss (bedrock) at the bottom. The spatial variability of the thickness of the regolith and fissured layers was estimated by electrical resistivity tomography (ERT) profiles, which were performed along a few cross sections in the watershed. For stochastic analysis using Monte Carlo simulation, the generated random layer thickness was made conditional to the available data from the geophysics. In order to simulate steady state flow in the irregular domain with variable geometry, we used an isoparametric finite element method to discretize the flow equation over an unstructured grid with irregular hexahedral elements. The results indicated that the spatial variability of the layer thickness had a significant effect on reducing the simulated effective steady seepage flux and that using the conditional simulations reduced the uncertainty of the simulated seepage flux. As a conclusion, combining information on the aquifer geometry obtained from geophysical surveys with stochastic modelling is a promising methodology to improve the simulation of groundwater flow in complex hard-rock aquifers. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an advanced single network adaptive critic (SNAC) aided nonlinear dynamic inversion (NDI) approach for simultaneous attitude control and trajectory tracking of a micro-quadrotor. Control of micro-quadrotors is a challenging problem due to its small size, strong coupling in pitch-yaw-roll and aerodynamic effects that often need to be ignored in the control design process to avoid mathematical complexities. In the proposed SNAC aided NDI approach, the gains of the dynamic inversion design are selected in such a way that the resulting controller behaves closely to a pre-synthesized SNAC controller for the output regulation problem. However, since SNAC is based on optimal control theory, it makes the dynamic inversion controller to operate near optimal and enhances its robustness property as well. More important, it retains two major benefits of dynamic inversion: (i) closed form expression of the controller and (ii) easy scalability to command tracking application even without any apriori knowledge of the reference command. Effectiveness of the proposed controller is demonstrated from six degree-of-freedom simulation studies of a micro-quadrotor. It has also been observed that the proposed SNAC aided NDI approach is more robust to modeling inaccuracies, as compared to the NDI controller designed independently from time domain specifications.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the evolution of polymer structure and its influence on uniaxial anisotropic stress under time-varying uniaxial strain, and the role of external control variables such as temperature, strain rate, chain length, and density, using molecular dynamics simulation. At temperatures higher than glass transition, stress anisotropy in the system is reduced even though the bond stretch is greater at higher temperatures. There is a significant increase in the stress level with increasing density. At higher densities, the uncoiling of the chains is suppressed and the major contribution to the deformation is by internal deformation of the chains. At faster rates of loading stress anisotropy increases. The deformation mechanism is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. There is a critical value of the functionality of the cross-linkers beyond which the uniaxial stress developed increases caused primarily by bond stretching due to increased constraint on the motion of the monomers. Stacking of the chains in the system also plays a dominant role in the behaviour in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length facilitate chain uncoiling and chain slipping in cross-linked polymers.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing -dQ/dt as a function of Q, which typically take a power law form: -dQ/dt=kQ, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between -dQ/dt and Q for a basin. However, recent observations indicate that -dQ/dt-Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between -dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic -dQ/dt-Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, , and the power law coefficient, k. It is noticed that that even with same and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
We propose a novel form of nonlinear stochastic filtering based on an iterative evaluation of a Kalman-like gain matrix computed within a Monte Carlo scheme as suggested by the form of the parent equation of nonlinear filtering (Kushner-Stratonovich equation) and retains the simplicity of implementation of an ensemble Kalman filter (EnKF). The numerical results, presently obtained via EnKF-like simulations with or without a reduced-rank unscented transformation, clearly indicate remarkably superior filter convergence and accuracy vis-a-vis most available filtering schemes and eminent applicability of the methods to higher dimensional dynamic system identification problems of engineering interest. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The basic requirement for an autopilot is fast response and minimum steady state error for better guidance performance. The highly nonlinear nature of the missile dynamics due to the severe kinematic and inertial coupling of the missile airframe as well as the aerodynamics has been a challenge for an autopilot that is required to have satisfactory performance for all flight conditions in probable engagements. Dynamic inversion is very popular nonlinear controller for this kind of scenario. But the drawback of this controller is that it is sensitive to parameter perturbation. To overcome this problem, neural network has been used to capture the parameter uncertainty on line. The choice of basis function plays the major role in capturing the unknown dynamics. Here in this paper, many basis function has been studied for approximation of unknown dynamics. Cosine basis function has yield the best response compared to any other basis function for capturing the unknown dynamics. Neural network with Cosine basis function has improved the autopilot performance as well as robustness compared to Dynamic inversion without Neural network.
Resumo:
An innovative partially integrated guidance and control (PIGC) technique is developed for trajectory fixing by considering six degree-of-freedom (Six-DOF) nonlinear engagement dynamics for successful interception of ground targets by guided munitions. This trajectory fixing algorithm gives closed form solution, where two different trajectories are designed in x - h and x - y planes separately using simple quadratic equations. In order to follow designed trajectories commanded pitch and yaw rates are generated in outer loop using dynamic inversion technique. In inner loop these body rates are tracked using faster dynamic inversion loop by generating the necessary control surface deflections. Simulation studies with actuator dynamics have been carried out to account for three dimensional (3D) engagement geometry to demonstrate the usefulness of PIGC technique.
Resumo:
FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Detection of QRS serves as a first step in many automated ECG analysis techniques. Motivated by the strong similarities between the signal structures of an ECG signal and the integrated linear prediction residual (ILPR) of voiced speech, an algorithm proposed earlier for epoch detection from ILPR is extended to the problem of QRS detection. The ECG signal is pre-processed by high-pass filtering to remove the baseline wandering and by half-wave rectification to reduce the ambiguities. The initial estimates of the QRS are iteratively obtained using a non-linear temporal feature, named the dynamic plosion index suitable for detection of transients in a signal. These estimates are further refined to obtain a higher temporal accuracy. Unlike most of the high performance algorithms, this technique does not make use of any threshold or differencing operation. The proposed algorithm is validated on the MIT-BIH database using the standard metrics and its performance is found to be comparable to the state-of-the-art algorithms, despite its threshold independence and simple decision logic.
Resumo:
Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.