289 resultados para Curve Theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the rotational motion of an elongated nanoscale object in a fluid under an external torque. The experimentally observed dynamics could be understood from analytical solutions of the Stokes equation, with explicit formulae derived for the dynamical states as a function of the object dimensions and the parameters defining the external torque. Under certain conditions, multiple analytical solutions to the Stokes equations exist, which have been investigated through numerical analysis of their stability against small perturbations and their sensitivity towards initial conditions. These experimental results and analytical formulae are general enough to be applicable to the rotational motion of any isolated elongated object at low Reynolds numbers, and could be useful in the design of non-spherical nanostructures for diverse applications pertaining to microfluidics and nanoscale propulsion technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes and codes with locality are schemes recently proposed for a distributed storage network. While regenerating codes minimize the data downloaded for node repair, codes with locality minimize the number of nodes accessed during repair. In this paper, we provide some constructions of codes with locality, in which the local codes are regenerating codes, thereby combining the advantages of both classes of codes. The proposed constructions achieve an upper bound on minimum distance and are hence optimal. The constructions include both the cases when the local regenerating codes correspond to the MSR point as well as the MBR point on the storage repair-bandwidth tradeoff curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Be the strong coupling constant alpha(s) from the tau hadronn width using a renormalization group summed (RGS) expansion of the QCD Adler lunction. The main theoretical uncertainty in the extraction of as is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard RGS expansion. The value of the strong coupling in (MS) over bar scheme obtained with the RCS expansion is alpha(s) (M-tau(2)) = 0.338 +/- 0.010. The convergence properties of the new expansion can be improved by Bond transformation and analytic continuation in t he Bond plane. This is discussed elsewhere in these issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C-60. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonite clays are proven to be attractive as buffer and backfill material in high-level nuclear waste repositories around the world. A quick estimation of swelling pressures of the compacted bentonites for different clay-water-electrolyte interactions is essential in the design of buffer and backfill materials. The theoretical studies on the swelling behavior of bentonites are based on diffuse double layer (DDL) theory. To establish theoretical relationship between void ratio and swelling pressure (e versus P), evaluation of elliptic integral and inverse analysis are unavoidable. In this paper, a novel procedure is presented to establish theoretical relationship of e versus P based on the Gouy-Chapman method. The proposed procedure establishes a unique relationship between electric potentials of interacting and non-interacting diffuse clay-water-electrolyte systems. A procedure is, thus, proposed to deduce the relation between swelling pressures and void ratio from the established relation between electric potentials. This approach is simple and alleviates the need for elliptic integral evaluation and also the inverse analysis. Further, application of the proposed approach to estimate swelling pressures of four compacted bentonites, for example, MX 80, Febex, Montigel and Kunigel V1, at different dry densities, shows that the method is very simple and predicts solutions with very good accuracy. Moreover, the proposed procedure provides continuous distributions of e versus P and thus it is computationally efficient when compared with the existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, variable structure systems theory based guidance laws, to intercept maneuvering targets at a desired impact angle, are presented. Choosing the missile's lateral acceleration (latax) to enforce sliding mode, which is the principal operating mode of variable structure systems, on a switching surface defined by the line-of-sight angle leads to a guidance law that allows the achievement of the desired terminal impact angle. As will be shown, this law does not ensure interception for all states of the missile and the target during the engagement. Hence, additional switching surfaces are designed and a switching logic is developed that allows the latax to switch between enforcing sliding mode on one of these surfaces so that the target can be intercepted at the desired impact angle. The guidance laws are designed using nonlinear engagement dynamics for the general case of a maneuvering target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3-endo sugars and this demands C1-C1 distance of about 5.4 angstrom along the chains. Consideration of an energy penalty term for deviation of C1-C1 distance from the mean value, to the recent DFT-D functionals, specifically B97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the storage-repair-bandwidth (SRB) trade-off curve of regenerating codes is reformulated to yield a tradeoff between two global parameters of practical relevance, namely information rate and repair rate. The new information-repair-rate (IRR) tradeoff provides a different and insightful perspective on regenerating codes. For example, it provides a new motivation for seeking to investigate constructions corresponding to the interior of the SRB tradeoff. Interestingly, each point on the SRB tradeoff corresponds to a curve in the IRR tradeoff setup. We characterize completely, functional repair under the IRR framework, while for exact repair, an achievable region is presented. In the second part of this paper, a rate-half regenerating code for the minimum storage regenerating point is constructed that draws upon the theory of invariant subspaces. While the parameters of this rate-half code are the same as those of the MISER code, the construction itself is quite different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (approximate to 95% using (2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Microsc. Res. Tech. 77:105-109, 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.